Чем отличается одномодовый оптический кабель от многомодового

Чем отличается одномодовый оптический кабель от многомодового

Удивить кого-то в наше время оптоволокном у себя в доме, на работе или даже в квартире не так уж легко. Технологии передачи данных через волоконно-оптическую линию связи распространяется с огромной скоростью. Постоянно ведется монтаж, как и новых оптических кабелей, так и модернизация по замене существующих медных кабелей (устаревшая технология DSL), на оптические.

Часто приходится слышать вопросы на тему оптоволоконных линий связи. В этой статье хочу ответить на один из часто задаваемых вопросов о разнице между одномодовыми и многомодовыми оптическими кабелями простыми словами, понятными конечному пользователю.

Так что же такое мода и с чем ее едят? Модами называются типы электромагнитных колебаний, которые распространяются в оптоволокне. Каждая мода имеют свою фазовую и групповую скорость. Под групповой скоростью понимается скорость переноса энергии, а под фазовой скоростью – скорость перемещения фазы волны. Если будем брать пример обычных электромагнитных волн, то там и фазовая и групповая скорости равны скорости света, в оптоволоконном же кабеле скорости разнятся и зависят от частоты колебаний волн, от диаметра волокна, от материалов из которых произведен кабель. Именно из-за этих совокупностей свойств кабеля возникает рассеивание (модовая дисперсия).

Исходя из определения моды, многомодовое (MultiMode MM) оптоволокно позволяет подавать несколько световых сигналов. Одномодовое (SingleMode MM)- позволяет пропустить через себя лишь один сигнал.

Казалось бы многомодовое волокно имеет преимущество перед одномодовым, но это только на первый взгляд. У многомода есть важный недостаток высокая модовая дисперсия.

Диаметр сердечника волокна многомодового кабеля составляет 50 мкм и более. Такая ширина как раз и позволяет подавать несколько мод в одно волокно, но так же и увеличивает вероятность отражения света от внешней поверхности сердечника, что и вызывает затухание сигнала. Соответственно для подачи сигнала на дальние расстояния использование подобного кабеля возможно, только если увеличивать количество ретрансляторов, что значительно удорожает проект. Скорость передачи данных составляет 2,5 Гб/с

У одномодового кабеля, диаметр сердечника составляет 10 мкм и меньше. В волокне с таким диаметром вероятность дисперсии значительно снижается, что позволяет передавать данные на большие расстояния. Одномодовое оптоволокно позволяет передавать данные со скоростью 10 Гб/с. Но в то же время одномодовый кабель и коммутирующее оборудование к нему дороже. Так же сварные стыки у одномода более чувствительны к качеству сварки.

Где и какое волокно лучше применять? Чаще всего многомодовое оптоволокно используется для организации ЛВС (локально-вычислительной сети) и СКС (структурированной кабельной сети) небольших размеров в рамках одного здания или прилегающих строений (около 500 метров). Волоконно-оптические линии связи с одномодовыми волокнами используют для подключения удаленных зданий, например для организации системы видеонаблюдения в рамках района, города или даже магистрали (1000м и более).

Волоконно-оптические системы связи ведут свою историю с 1960 года, когда был изобретен первый лазер. При этом само оптическое волокно появилось только 10 лет спустя, и сегодня именно оно является физической основой современного интернета.

Оптические волокна, применяемые для передачи данных, имеют принципиально схожее строение. Светопередающая часть волокна (ядро, сердечник или сердцевина) находится в центре, вокруг него располагается демпфер (который иногда называют оболочкой). Задача демпфера – создать границу раздела сред и не дать излучению покинуть пределы ядра.

И ядро, и демпфер изготавливаются из кварцевого стекла, при этом показатель преломления ядра несколько выше, чем показатель преломления демпфера, чтобы реализовать явление полного внутреннего отражения. Для этого достаточно разницы в сотые доли – например, ядро может иметь показатель преломления n1=1.468, а демпфер – значение n2=1.453.

Диаметр ядра одномодовых волокон составляет 9 мкм, многомодовых – 50 или 62.5 мкм, при этом диаметр демпфера у всех волокон одинаков и составляет 125 мкм. Строение световодов в масштабе показано на иллюстрации:

Ступенчатый профиль показателя преломления (stepindex fiber)– самый простой для изготовления световодов. Он приемлем для одномодовых волокон, где условно считается, что «мода» (маршрут распространения света в ядре) одна. Однако для многомодовых волокон со ступенчатым показателем преломления характерна высокая дисперсия, вызванная наличием большого количества мод, что приводит к рассеиванию, «расползанию» сигнала, и в итоге ограничивает расстояние, на котором возможна работа приложений. Минимизировать дисперсию мод позволяет градиентный показатель преломления. Для многомодовых систем настоятельно рекомендуется использовать именно волокна с градиентным показателем преломления (gradedindex fiber), в которых переход от ядра к демпферу не имеет «ступеньки», а происходит постепенно.

Читайте также:  Гармоничные сочетания цветов таблица

Основной параметр, характеризующий дисперсию и, соответственно, способность волокна поддерживать работу приложений на определенные расстояния – коэффициент широкополосности. В настоящее время многомодовые волокна делятся по этому показателю на четыре класса, от OM1 (которые не рекомендуется применять в новых системах) до наиболее производительного класса OM4.

Класс волокна

Размер ядра/демпфера, мкм

Коэффициент широкополосности,
режим OFL, МГц·км

Примечание

850 нм

1300 нм

OM1

Применяется для расширения ранее установленных систем. Использовать в новых системах не рекомендуется.

OM2

Применяется для поддержки приложений с производительностью до 1 Гбит/с на расстоянии до 550 м.

OM3

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 2000 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 300 м.

OM4

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 4700 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 550 м.

Одномодовые волокна делятся на классы OS1 (обычные световоды, используемые для передачи на длинах волн либо 1310 нм, либо 1550 нм) и OS2, которые можно применять для широкополосной передачи во всем диапазоне от 1310 нм до 1550 нм, поделенном на каналы передачи, или в даже более широком спектре, например, от 1280 до 1625 нм. На начальном этапе выпуска волокна OS2 маркировались обозначением LWP (Low Water Peak), чтобы подчеркнуть, что в них минимизированы пики поглощения между окнами прозрачности. Широкополосная передача в наиболее производительных одномодовых волокнах обеспечивает скорости передачи свыше 10 Гбит/с.

Одномодовый и многомодовый волоконно-оптический кабель: правила выбора

Учитывая описанные характеристики многомодовых и одномодовых волокон, можно привести рекомендации по выбору типа волокна в зависимости от производительности приложения и расстояния, на котором оно должно работать:

для скоростей свыше 10 Гбит/с выбор в пользу одномодового волокна независимо от расстояния

для 10-гигабитных приложений и расстояний свыше 550 м выбор также в пользу одномодового волокна

для 10-гигабитных приложений и расстояний до 550 м также возможно применение многомодового волокна OM4

для 10-гигабитных приложений и расстояний до 300 м также возможно применение многомодового волокна OM3

для 1-гигабитных приложений и расстояний до 600-1100 м возможно применение многомодового волокна OM4

для 1-гигабитных приложений и расстояний до 600-900 м возможно применение многомодового волокна OM3

для 1-гигабитных приложений и расстояний до 550 м возможно применение многомодового волокна OM2

Стоимость оптического световода во многом определяется диаметром ядра, поэтому многомодовый кабель при прочих равных обходится дороже одномодового. При этом активное оборудование для одномодовых систем из-за использования в них мощных лазерных источников (например, лазер Фабри-Перо) стоит существенно дороже активки для многомода, где используются либо относительно недорогие лазеры поверхностного излучения VCSEL либо еще более дешевые светодиодные источники. При оценке стоимости системы необходимо учитывать затраты как на кабельную инфраструктуру, так и на активное оборудование, причем последние могут оказаться существенно больше.

На сегодняшний день сложилась практика выбора оптического кабеля в зависимости от сферы использования. Одномодовое волокно используется:

в морских и трансокеанских кабельных линиях связи;

в наземных магистральных линиях дальней связи;

в провайдерских линиях, линиях связи между городскими узлами, в выделенных оптических каналах большой протяженности, в магистралях к оборудованию операторов мобильной связи;

в системах кабельного телевидения (в первую очередь OS2, широкополосная передача);

в системах GPON с доведением волокна до оптического модема, размещаемого у конечного пользователя;

в СКС в магистралях длиной более 550 м (как правило, между зданиями);

в СКС, обслуживающих центры обработки данных, независимо от расстояния.

Читайте также:  Как утеплить гараж из профлиста

Многомодовое волокно в основном используется:

в СКС в магистралях внутри здания (где, как правило, расстояния укладываются в 300 м) и в магистралях между зданиями, если расстояние не превышает 300-550 м;

в горизонтальных сегментах СКС и в системах FTTD (fibertothedesk), где пользователям устанавливаются рабочие станции с многомодовыми оптическими сетевыми картами;

в центрах обработки данных в дополнение к одномодовому волокну;

во всех случаях, где расстояние позволяет применять многомодовые кабели. Хотя сами кабели обходятся дороже, экономия на активном оборудовании покрывает эти затраты.

Можно ожидать, что в ближайшие годы волокно OS2 постепенно вытеснит OS1 (его снимают с производства), а в многомодовых системах исчезнут волокна 62.5/125 мкм, поскольку их полностью вытеснят световоды 50 мкм, вероятно, классов OM3-OM4.

Тестирование одномодовых и многомодовых оптических кабелей

После монтажа все установленные оптические сегменты подлежат тестированию. Только измерения, проведенные специальным оборудованием, позволяют гарантировать характеристики установленных линий и каналов. Для сертификации СКС применяются приборы с квалифицированными источниками излучения на одном конце линии и измерителями на другом. Такое оборудование производят компании Fluke Networks, VIAVI, Psiber; все подобные устройства имеют предустановленные базы допустимых оптических потерь в соответствии с телекоммуникационными стандартами TIA/EIA, ISO/IEC и другими. Более протяженные оптические линии проверяют с помощью оптических рефлектометров, имеющих соответствующий динамический диапазон и разрешающую способность.

На этапе эксплуатации все установленные оптические сегменты требуют бережного обращения и регулярного использования специальных чистящих салфеток, палочек и других средств очистки.

Нередки случаи, когда проложенные кабели повреждают, например, при копке траншей или при выполнении ремонтных работ внутри зданий. В этом случае для поиска места сбоя необходим рефлектометр или другой диагностический прибор, основанный на принципах рефлектометрии и показывающий расстояние до точки сбоя (подобные модели есть у производителей Fluke Networks, EXFO, VIAVI, NOYES (FOD), Greenlee Communication и других).

Встречающиеся на рынке бюджетные модели предназначены в основном для локализации повреждений (плохих сварок, обрывов, макроизгибов и т д). Зачастую они не в состоянии провести детальную диагностику оптической линии, выявить все её неоднородности и профессионально создать отчет. Кроме этого, они менее надежны и долговечны.

Качественное оборудование – напротив надежно, способно диагностировать ВОЛС в мельчайших деталях, составить корректную таблицу событий, сгенерировать редактируемый отчет. Последнее крайне важно для паспортизации оптических линий, потому как иногда встречаются сварные соединения с настолько низкими потерями, что рефлектометр не в состоянии определить такое соединение. Но сварка ведь всё равно есть, и ее необходимо отобразить в отчёте. В этом случае программное обеспечение позволяет принудительно установить на рефлектограмме событие и в ручном режиме измерить потери на нем.

Многие профессиональные приборы также имеют возможность расширения функциональных возможностей за счет добавления опций: видеомикроскопа для инспектирования торцов волокон, источника лазерного излучения и измерителя мощности, оптического телефона и др.

Оптические волокно стандарт де-факто при построении магистральных сетей связи. Протяженность волоконно-оптических линий связи в России у крупных операторов связи достигает > 50 тыс.км.
Благодаря волокну мы имеем все те преимущества в связи, которых не было раньше.
Вот и попробуем рассмотреть виновника торжества — оптическое волокно.

В статье попробую написать просто о оптических волокнах, без математических выкладок и с простыми человеческими объяснениями.

Статья чисто ознакомительная, т.е. не содержит уникальных знаний, всё что будет описано может быть найдено в куче книг, однако, это не копипаст, а выжимка из «кучи» информации только лишь сути.

Классификация

Чаще всего волокна подразделяют на 2 общих типа волокон
1. Многомодовые волокна
2. Одномодовые

дадим пояснение на «бытовом» уровне что есть одномод и многомод.
Представим гипотетическую систему передачи с волокном воткнутым в нее.
Нам надо передать двоичную информацию. Импульсы электричества в волокне не распространяются, ибо диэлектрик, поэтому мы будим передавать энергию света.
Для этого нам нужен источник световой энергии. Это могут быть светодиоды и лазеры.
Теперь мы знаем что мы используем в качестве передатчика — это свет.

Читайте также:  Кивок из рентгеновской пленки

Подумаем как свет вводится в волокно:
1) Световое излучение имеет свой спектр, поэтому если сердцевина волокна широкая (это в многомодовом волокне), то больше спектральных составляющих света попадет в сердцевину.
Например мы передаем свет на длине волны 1300нм (к примеру), сердцевина многомода широкая, то и путей распространения у волн больше. Каждый такой путь и есть моды

2) Если же сердцевина маленькая (одномодовое волокно), то путей распространения волн соотвественно уменьшается. И так как дополнительных мод гораздо меньше, то и не будет и модовой дисперсии (о ней ниже).

Это основное отличие многомодового и одномодового волокон.
Спасибо enjoint, tegger, hazanko за замечания.

Многомодовые в свою очередь делятся на волокна со ступенчатым показателем преломления (step index multi mode fiber) и с градиентным (graded index m/mode fiber).

Одномодовые делятся на ступенчатые, стандартные (standard fiber), со смещенной дисперсией (dispersion-shifted) и ненулевой смещенной дисперсией (non-zero dispersion-shifted)

Конструкция оптического волокна

Каждое волокно состоит из сердцевины и оболочки с разными показателями преломления.
Сердцевина (которая и является основной средой передачи энергии светового сигнала) изготавливается из оптически более плотного материала, оболочка — из менее.

Так, например, запись 50/125 говорит о том, что диаметр сердцевины равен 50 мкм, оболочки — 125мкм.

Диаметры сердцевины равные 50мкм и 62,5мкм являются признаками многомодовых оптических волокон, а 8-10мкм, соответственно, одномодовым.
Оболочка же, как правило, всегда имеет диаметр размером 125мкм.

Как видно диаметр сердцевины одномодового волокна имеет намного меньший размер, нежели диаметр многомодового. Меньший диаметр сердцевины позволяет уменьшить модовую дисперсию (о которой, возможно, будет написано в отдельной статье, а также вопросы распространения света в волокне), а соответственно увеличить дальность передачи. Однако, тогда бы одномодовые волокна вытеснили многомоды, благодаря более лучшим «транспортным» характеристикам, если бы не необходимость использовать дорогие лазеры с узким спектром излучения. В многомодовых волокнах используются светодиоды с более размазанным спектром.

Поэтому для недорогих оптических решений, таких как локальные сети интернет-провайдеров применения многомода случается.

Профиль показателя преломления

Вся пляска с бубном у волокна с целью увеличения скорости передачи была вокруг профиля показателя преломления. Так как основным сдерживающим фактором увеличения скорости является модовая дисперсия.
Кратко суть в следующем:
когда излучение лазера поступает в сердцевину волокна, то сигнал передается по ней в виде отдельных мод (грубо: лучей света. А на самом деле разные спектральные составляющие вводимого сигнала)
Причем входят «лучи» под разными углами, поэтому время распространения энергии отдельно взятых мод различается. Это проиллюстрировано на рисунке ниже.

Здесь отображены 3 профиля преломления:
ступенчатый и градиентный для многомодового волокна и ступенчатый для одномодового.
Видно, что в многомодовых волокнах моды света распространяются по различным путям, но, из-за постоянного коэффициента преломления сердцевины с ОДИНАКОВОЙ скоростью. Те моды, которые вынуждены идти по ломанной линии приходят позже, чем моды, идущие по прямой. Поэтому исходный сигнал растягивается во времени.
Другое дело с градиентным профилем, те моды которые раньше шли по центру — замедляются, а моды, которые шли по ломанному пути, наоборот, ускоряются. Это произошло оттого, что коэффициент преломления сердечника теперь непостоянен. Он увеличивается параболически от краев к центру.
Это позволяет увеличить скорость передачи и получить распознаваемый сигнал на приеме.

Области применения оптических волокон

Многомодовое волокно Одномодовое волокно
MMF 50(62.5)/125
Градиентное
SF 9/125
ступенчатое
SF 9/125
со смещенной дисперсией
(с ненулевой смещенной дисп.)
ЛВС(GigaEther,FDDI,ATM) Протяженные ЛВС, магистрали SDH Сверхпротяженные магистрали SDH

К этому можно добавить, что магистральные кабели теперь все почти идут с ненулевой смещенной дисперсий, что позволяет использовать на этих кабелях спектральное волновое уплотнение (WDM) без нужды замены кабеля.
А при построении пассивных оптических сетей часто используют многомодовое волокно.

Спасибо тем, кто конструктивно критиковал.

PS
если будет интересно, то могут появиться статьи о
— дисперсии
— типах волоконно-оптических кабелей (не волокон)
— системах передачи, используемых для wdm/dwdm уплотнения.
— процедура сварки оптических волокон. и типы сколов.

Ссылка на основную публикацию
Adblock detector