Чертеж асинхронного двигателя с короткозамкнутым ротором

Чертеж асинхронного двигателя с короткозамкнутым ротором

В данной статье речь пойдет о схемах управления асинхронным двигателем (АД). В настоящее время существуют три наиболее часто используемые схемы управления асинхронным двигателем с короткозамкнутым ротором:

  • схема управления нереверсивным двигателем – «прямой пуск»;
  • схема реверсивного управления двигателем;
  • схема управления двигателем «звезда-треугольник».

В конце данной статьи, вы сможете скачать данные схемы выполненные в программе AutoCad в формате dwg.

Схема управления нереверсивным двигателем – «прямой пуск»

Данная схема состоит из следующих устройств:

    автоматический трехполюсный выключатель – QF1 (защита цепей питания двигателя

380В);

  • линейный контактор – КМ1;
  • тепловое реле – КК1 (защита от перегрузки двигателя);
  • предохранитель – FU1 (защита цепей управления
  • 220В);

  • кнопки «СТОП» и «ПУСК» с самовозвратом – SB1 и SB2;
  • сигнальные лампы — HL1 и HL2.
  • При нажатии кнопки SB2 «ПУСК» подается напряжение на катушку контактора КМ1. Контактор срабатывает и своими силовыми контактами подключает к сети 380В асинхронный двигатель. При этом своими контактами 14-13 шунтирует кнопку SB2, делается это для того, чтобы катушка контактора была постоянно под напряжением и он не отключался при отпускании кнопки SB2.

    Отключение двигателя происходит нажатием кнопки SB1 «СТОП». Для защиты от перегрузки двигателя применяется тепловое реле КК1, в случае перегрузки двигателя, контакты 96-95 реле КК1 размыкаются снимая напряжение с катушки контактора КМ1.

    Схема реверсивного управления двигателем

    Отличие данной схемы от предыдущей схемы в том, что изменяя порядок чередования фаз на статоре двигателя, мы изменяем направление вращения ротора двигателя «Вправо» — «Влево».

    При нажатии кнопки SB2 «Открыть» (в данном примере схема используется для управления реверсивной задвижкой) срабатывает контактор КМ1 и ротор двигателя вращается в одну сторону при этом задвижка открывается. В этом случае порядок чередования – А, В, С.

    Что бы ротор двигателя вращался в другую сторону, нужно сначала нажать кнопку SB1 «СТОП» и лишь потом нажать кнопку SB3 «Закрыть», в результате сработает контактор КМ2 и ротор двигателя вращается в обратную сторону при этом задвижка закрывается. Порядок чередования фаз – С, В, А.

    Во избежание короткого замыкания при одновременном нажатии кнопок SB2 и SB3 используются нормально-закрытые контакты 22-21 контакторов КМ1 и КМ2 и таким образом исключается возможность включения одного контактора пока не обесточится другой.

    Схема управления двигателем «звезда-треугольник»

    Данная схема применяется когда нужно уменьшить пусковой ток двигателя, в основном она используется для двигателей большой мощности.

    В момент пуска, обмотки статора двигателя соединены в «звезду», после того как двигатель разогнался, происходит переключение обмоток статора со «звезды» на «треугольник».

    Читайте также:  Часы в стиле лофт своими руками

    Подробно об изменении мощности при схеме соединении двигателя звезда-треугольник рассмотрено в статье: «Расчет мощности двигателя при схеме соединения звезда-треугольник».

    При нажатии кнопки SB2 «ПУСК» подается напряжение на катушку реле времени КТ1, контактора КМ1 и промежуточного реле KL1. Реле KL1 добавлено в схему в связи с тем, что у реле времени есть только одна группа блок-контактов, если же у Вашего реле времени есть дополнительная группа блок-контактов, реле KL1 – не используется. Не много забегая вперед, в архиве вы сможете найти схему управления двигателем «звезда-треугольник» без промежуточного реле KL1.

    После того как сработало реле KL1 мгновенно замыкаются его контакты 11-14 и через нормально закрытые контакты 22-21 контактора КМ2 срабатывает контактор КМ3. При этом контакты 21-22 реле KL1 размыкаются, тем самым выполняется блокировка от одновременного включения контакторов КМ3 и КМ2.

    Когда контактор КМ3 сработал, он своими силовыми контактами соединяет обмотку статора двигателя «звездой».

    После того как двигатель разогнался при пониженном напряжении, контакты реле времени КТ1 11-12 разомкнутся, тем самым сняв напряжение с катушки реле KL1, в это время контакты реле KL1 11-14 размыкают цепь включения контактора КМ3, а в цепи включения контактора КМ2 замыкаются, и если контакты 21-22 контактора КМ3 замкнуты, то включается контактор КМ2.

    После этого контактор КМ2 своими силовыми контактами соединяет обмотку статора двигателя «треугольником».

    На этом процесс подключения двигателя к сети

    380 В – заканчивается.

    В архиве вы сможете найти следующие схемы в формате dwg:

    • схема управления нереверсивным двигателем – «прямой пуск»
    • схема реверсивного управления двигателем
    • схема управления двигателем «звезда-треугольник» с реле времени и промежуточным реле
    • схема управления двигателем «звезда-треугольник» с реле времени

    Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каж­дая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора — вто­ричной, так как энергия в нее поступает из обмотки статора за счет магнит­ной связи между этими обмотками.

    По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рас­смотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.5.2). Двигатели этого вида имеют наиболее широкое применение.

    Рис.5.2. Устройство трехфазного асинхронного двигателя

    с короткозамкнутым ротором:

    1 — вал; 2, 6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов;

    5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкну-

    той обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы

    Читайте также:  Как сделать самодельный ствол

    Неподвижная часть двигателя — статор — состоит из корпуса // и сердечника 10 с трехфазной обмоткой. Корпус двигателя отливают из алю­миниевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

    В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехничес­кой стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными свар­ными швами по наружной поверхности пакета. Такая конструкция Сердеч­ника способствует значительному уменьшению вихревых токов, возникаю­щих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продоль­ные пазы, в которых расположены пазовые части обмотки статора, соеди­ненные в определенном порядке лобовыми частями, находящимися за преде­лами сердечника по его торцовым сторонам. Конструкция короткозамкнутого ротора приведена на рис.5.3.

    Рис.5.3. Конструкция короткозамкнутого ротора: а — беличья клетка; б — ротор с медной стержневой обмоткой; в — ротор с алюминиевой литой обмоткой;

    1 — сердечник ротора; 2 — стержни; 3 — замыкающие кольца;

    4 — лопасти вентилятора

    Обмотка статора асинхронного электродвигателя может быть соединена звездой или треугольником. Схемы соединения представлены на рис.5.4

    Рис.5.4. Схемы соединения выводов трехфазных обмоток электродвигателя:

    а — звезда; б — треугольник

    5.3. Принцип образования вращающегося магнитного поля

    Принцип образования вращающегося магнитного поля рассмотрим на при­мере простейшей трехфазной двухполюсной обмотки, каждая фаза которой состоит из одной секции, фазы обмотки соединены звездой (рис.5.5). При этом секции тока в фазных обмотках (по времени) относительно друг друга на электрический угол 120° (рис.5.5, б). Проведем ряд построений вектора МДС трехфазной обмотки Fm, соответствующих различным моментам времениt0, t1, t2,t3отмеченным на графике рис.5.5, б.

    В момент времени tток в фазе А равен 0, в фазе В ток имеет отрица­тельное, а в фазе С — положительное направления. Эти направления тока отмечаем на рис.5.5, б в сечениях обмоток статора для данного момента времени. При этом следует помнить, что за положительное направление тока

    Рис.5.5. Получение вращающегося магнитного поля: а — трехфазная обмотка статора;

    б — вращение МДС; в — модель магнитного поля статора;

    1-4 — обмотка фазы А; 3-6 — обмотка фазы В;

    5—2 — обмотка фазы С (первая цифра — начало обмотки)

    в фазной обмотке принимается направление тока от начала обмотки к ее концу и обозначается х, а, следовательно, отрицательное направление тока в обмотке соответствует направлению тока от конца к началу и обозначается •. Затем в соответствии с указанными на рис. 5, б направлениями токов определяем (по правилу буравчика) направление вектора МДС трехфазной обмотки статора (вектор Fmнаправлен вниз).

    Читайте также:  Леска для триммера рейтинг

    В момент времени t1т.е. через (1/3) Т, ток в фазе В равен нулю, в фазе А имеет положительное, а в фазе С — отрицательное направление. Сделав построения, аналогичные моменту времени t, заметим, что вектор МДС обмотки статора Fmпо сравнению с его положением в момент вре­мени tповернулся на 120° в направлении движения часовой стрелки.

    Проведя аналогичные построения вектора МДС обмотки статора для момента t2и t3, видим, что каждый раз при переходе от одного момента времени к другому вектор Fmповорачивается на 120°, а за один период изменения токов в обмотках (с tдо t3) делает полный оборот (360°) и будет, таким образом, вращающимся. Вращающаяся МДС создает враща­ющееся магнитное поле, эквивалентное полю магнита N — S с индукци­ей Во (рис.5, в). Это поле вращается с синхронной частотойnкото­рая пропорциональна частоте переменного токаfи обратно пропорцио­нальна числу пар полюсов обмоток статора р, т.е.

    ,

    Зависимость n от р и f представлена в табл.5.2.

    02.01.01.04.38
    22 с., 1 табл., 0 рис., 1 источник, 1 приложение
    7 листа плакатов и чертежей, спецификации 1 лист
    2007

    Проект по дисциплине «Электрические машины»

    Для разработки проекта заданы исходные параметры. Рассмотрены характеристики асинхронных двигателей серии 4А. Описана конструкция проектируемой машины. Расчёт производился на базе асинхронного двигателя 4А 180М2У3 основного поколения с короткозамкнутым ротором. Приняты главные размеры магнитной цепи машины, параметры сердечников статора и ротора. Выполнен расчёт обмотки статора с трапецеидальными полузакрытыми пазами и расчёт обмотки короткозамкнутого ротора с овальными полузакрытыми пазами. Произведён расчёт магнитной цепи, активных и индуктивных сопротивлений обмоток. Рассчитаны номинальный режим и режим холостого хода, максимальный момент, начальные пусковой ток и момент. Выполнены расчёты тепловой и вентиляционный. Рассчитаны общая масса двигателя и динамический момент инерции короткозамкнутого ротора. Дополнительные материалы: рабочие характеристики на 1листе А4 в Компас.

    Чертежи

    Чертеж деталь вала (формат А3)

    Чертеж схемы электрических соединений статора (формат А3)

    Чертеж схемы электрических соединений статора (формат А3)

    Чертёж сборочный асинхронного электродвигателя 4А180М2У3 (формат А1)

    Чертёж деталь овальные закрытые пазы ротора (формат А4)

    Чертёж сборочный паза статора с обмоткой (формат А4)

    Чертёж деталь трапецеидальные полузакрытые пазы статора(формат А4)

    “>

    Ссылка на основную публикацию
    Adblock detector