Что такое элементная база эвм

Что такое элементная база эвм

Структурная организация современных ЭВМ

2.1. Поколения ЭВМ и их элементная база. 14

2.2. Архитектура ЭВМ.. 20

2.3. Современная классификация ЭВМ.. 24

2.4. Основные устройства системного блока ЭВМ.. 29

2.4.2. Системная (материнская) плата. 32

2.4.4. Запоминающие устройства. 38

2.4.5. Интерфейсы сопряжения и платы расширения. 49

2.5. Внешние устройства ЭВМ.. 57

2.5.2. Печатающие устройства. 67

2.5.3. Устройства для вывода звуковой информации. 78

2.5.4. Устройства ввода изображения. 82

2.5.5. Устройства обработки мультимедиа-данных. 88

2.5.6. Указательные (координатные) устройства. 93

2.5.7. Игровые устройства. 95

Поколения ЭВМ и их элементная база

В основу периодизации ЭВМ по поколениям (являющейся все-таки относительной) положены следующие факторы:

– физико-технологический принцип (поколение машины определяется в зависимости от используемых в ней физических элементов или технологии их изготовления);

– уровень программного обеспечения;

– быстродействие и др.

Как правило, границы поколений четко не определены, так как в один и тот же период выпускались машины разного уровня.

Доэлектронный период. Вопрос облегчения выполнения вычислений всегда волновал умы ученых. Первые счеты появились около пяти тысяч лет назад. Но более серьезные механические устройства появились только после XV века: суммирующая машина, машина Якобсона, счислитель Куммера, счетный механизм, различные арифмометры. Все эти наработки и накопленный веками опыт классификации и индексации информации подготовили почву для создания и повсеместного применения ЭВМ.

Первое поколение ЭВМ (1948–1958) создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, «Стрела», Минск-1, Урал-1, Урал-2, Урал-3, М-20, «Сетунь», БЭСМ-2, «Раздан» (рис. 2.1).

ЭВМ первого поколения были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2–3 тысячи операций в секунду, емкость оперативной памяти – 2 кб или 2048 машинных слов (1 кб = 1024) длиной 48 двоичных знаков.

Второе поколение ЭВМ (1959–1967) появилось в 60-е гг. ХХ века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов (рис. 2.2, 2.3). Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

а

б

в

Рис. 2.1. ЭВМ первого поколения: а – МЭСМ; б – БЭСМ-1; в – «Стрела»

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития ПО.

Рис. 2.2. ЭВМ второго поколения «Наири» Рис. 2.3. ЭВМ второго поколения МИР-2

Третье поколение ЭВМ (1968–1973). Элементная база ЭВМ – малые интегральные схемы (МИС), содержавшие на одной пластинке сотни или тысячи транзисторов. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент. Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ и резко снизить цены на аппаратное обеспечение. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличенное быстродействие, повышенную надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

Четвертое поколение ЭВМ (1974–1982). Элементная база ЭВМ – большие интегральные схемы (БИС). Наиболее яркие представители четвертого поколения ЭВМ – персональные компьютеры (ПК). Связь с пользователем осуществлялась посредством цветного графического дисплея с применением языков высокого уровня.

Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что привело к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее ПО. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (ОС) (или монитора) – набора программ, которые организуют непрерывную работу машины без вмешательства человека (рис. 2.4).

Рис. 2.4. ЭВМ четвертого поколения СМ-1420

Пятое поколение ЭВМ (1990 – настоящее время) создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

В соответствии с [5] основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

– компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы;

– компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта, т. е. для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

В работе [6] проект пятого поколения ЭВМ, опубликованный в начале 80-х гг. ХХ столетия в Японии, рассмотрен более подробно.

Основная идея этого проекта – сделать общение конечного пользователя с компьютером максимально простым, подобным общению с любым бытовым прибором. Для решения поставленной задачи предлагались следующие направления (рис. 2.5):

– разработка простого интерфейса, позволяющего конечному пользователю вести диалог с компьютером для решения своих задач. Подоб­ный интерфейс может быть организован двумя способами: естественно-языковым и графическим. Поддержка естественно-языкового диалога – очень сложная и не решенная пока задача. Реальным является создание графического интерфейса, что и сделано в ряде программных продуктов, например, в ОС Windows’xx. Однако разработка доступных интерфейсов решает проблему только наполовину – позволяет конечному пользователю обращаться к заранее спроектированному программному обеспечению, не принимая участия в его разработке;

– привлечение конечного пользователя к проектированию программных продуктов. Это направление позволило бы включить заказчика непосредственно в процесс создания программ, что в конечном итоге сократило бы время разработки программных продуктов и, возможно, повысило бы их качество. Подобная технология предполагает два этапа проектирования программных продуктов:

● программистом создается «пустая» универсальная программная оболочка, способная наполняться конкретными знаниями и с их использованием решать практические задачи. Например, эту оболочку можно было бы заполнить правилами составления квартальных и иных балансов предприятий, и тогда она могла бы решать задачи бухгалтерского учета;

● конечный пользователь заполняет созданную программистом программную оболочку, вводя в нее знания, носителем которых (в некоторой предметной области) он является. После этого программный продукт готов к эксплуатации (рис. 2.5).

Рис. 2.5. Два этапа технологии подготовки прикладных задач к решению на компьютере, предлагаемые в проекте ЭВМ пятого поколения: а – программист создает пустую программную оболочку;
б – заказчик (конечный пользователь) наполняет оболочку знаниями

Наполненная знаниями конечного пользователя программная оболочка готова к решению тех прикладных задач, правила решения которых внес в нее конечный пользователь. Таким образом, начинается эксплуатация программного продукта.

Предлагаемая технология имеет много серьезных проблем, связанных с представлением и манипулированием знаниями. Тем не менее с ней связывают прорыв в области проектирования прикладных программных продуктов.

Шестое и последующие поколения ЭВМ. Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Деление ЭВМ по временным периодам и номерам поколений, как уже упоминалось, – достаточно условное. Ряд авторов вводят понятие нулевого поколения и существенно иные временные интервалы для поколений.

В табл. 2.1 показана эволюция технологий использования компьютерных систем.

Дата добавления: 2016-11-23 ; просмотров: 15372 | Нарушение авторских прав

В 1898 году в иллюстрированном еженедельнике «Журнал новейших открытий и изобретений» была опубликована статья «Домашнее устройство опытов телеграфирования без проводов». Передатчик был выполнен на катушке Румкорфа, а приемник, по сути дела, был очень похож на грозоотметчик А.С. Попова. С помощью описанных приемника и передатчика можно было передавать сигнал на расстояние до 25 м, что для того времени было огромным достижением.

Читайте также:  Рис для роллов как варить в кастрюле

Уже в 1924 году вышел в свет первый номер журнала «Радиолюбитель». В середине 1930 года журнал переименовали в «Радиофронт» и под этим названием он издавался до июля 1941 года. В годы Великой Отечественной войны журнал, конечно, не издавался. Первый послевоенный выпуск журнала увидел свет в январе 1946. Именно с этого январского номера журнал стал называться «Радио». Его обложка показана на рисунке.

Самое поразительное в этом номере то, что после схем детекторных приемников, приводится цветная маркировка резисторов, в таком виде, какая она есть на сегодняшний день! Правда, там же сказано, что это новая американская маркировка. В России же «полосатые» резисторы появились лишь в конце двадцатого века, да и то внутри импортных магнитол и телевизоров. Зато «наши» преуспели в цветной маркировке полупроводников: стараясь для нужд оборонки, засекретили всё до такой степени, что понять какой же это транзистор или диод стало просто невозможно. Эта цветовая маркировка стала в полном объеме публиковаться лишь в настоящее время, вот только отечественными транзисторами пользоваться практически перестали.

Рис. 1. Обложка первого номера журнала Радио

В первое время в журнале описывались конструкции ламповых приемников, передатчиков и усилителей звуковой частоты. Уже с первых номеров журнал «Радио» публиковал справочные данные электронных ламп и других радиодеталей. Решались также вопросы о том, с чего начать радиолюбительские опыты: с изучения теории, или сразу брать в руки паяльник?

Элементная база радиолюбителя

Интересный исторический факт: когда еще не было электрических паяльников, то выручала обычная пятикопеечная монета. Ее определенным образом затачивали и приклепывали к железной проволоке с деревянной ручкой. Будучи нагретой в пламени спиртовки монета вполне справлялась с функцией паяльника. Сейчас, конечно, такой совет кажется просто нелепым, но ведь было же!

При современной элементной базе, которая постоянно пополняется новыми микросхемами и транзисторами, таким «паяльником» просто нечего делать, ведь в некоторых случаях при ремонте электронной техники приходится пользоваться микроскопом. Таким образом, элементная база определяет не только конструкцию электронных устройств, а еще и то, какими инструментами эти устройства будут собираться или ремонтироваться.

Достаточно просто и наглядно развитие элементной базы можно проследить на различных поколениях ЭВМ, по современной терминологии компьютеров. Вот уже почти сорок лет развивающийся рынок персональных компьютеров как локомотив тащит за собой кремниевые технологии, что вызывает появление все новых и новых электронных компонентов.

Электромеханические вычислительные машины

Еще до создания ЭВМ использовались электромеханические вычислительные устройства – табуляторы. Первый табулятор был изобретен еще в 1890 году Германом Хопперитом в США, для подсчета результатов переписи населения. Ввод информации осуществлялся с перфокарт, а результаты обработки выдавались в виде распечатки на бумаге.

Табуляторы были основным оборудованием машиносчетных станций — МСС. В СССР МСС дожили до семидесятых годов двадцатого столетия, по крайней мере, в составе крупных госпредприятий. Основной задачей МСС был расчет заработной платы. Именно оттуда появлялись расчетные листки, которые до сих пор называют «корешками».

Внешний вид «современного» табулятора показан на рисунке (квадрат с правого бока это рабочая программа, набранная проводами на коммутационной панели). Вес такой вычислительной техники достигал 600 кг.

Рис. 2. Табулятор

«Программа» показана на следующем рисунке. Цветными проводами соединяли гнезда, которые на другой стороне текстолитовой панели оканчивались контактами для подсоединения к табулятору.

Рис. 3. Коммутационная панель табулятора

В 1939 году в США по заказу военных фирмой IBM была разработана вычислительная машина Mark 1. Ее элементной базой были электромеханические реле. Сложение двух чисел она выполняла за 0,3 сек, а умножение за 3. Mark 1 предназначалась для расчета баллистических таблиц. Компьютер Mark 1 содержал около 750 тысяч деталей, для соединения которых потребовалось 800 км проводов. Его размеры: высота 2,5м, длина 17 м.

Поколения ЭВМ и элементная база

Первое поколение ЭВМ было построено на электронных лампах. Так в Великобритании в 1943 году была создана ЭВМ Colossus. Правда, она была узкоспециализированная, ее назначение состояло в расшифровке немецких кодов путем перебора разных вариантов. Устройство содержало 2000 ламп, при этом скорость работы составляла 500 знаков в секунду.

Первым универсальным ламповым компьютером считается ENIAC, созданный в 1946 году в США по заказу военных. Размеры этой ЭВМ очень впечатляют: 25 м в длину и почти 6 м в высоту. Машина содержала 17000 электронных ламп и выполняла в секунду около 300 операций умножения, что намного больше, чем у релейной машины Mark 1. Потребляемая мощность была около 150 КВт. С помощью расчетов на ЭВМ ENIAC была доказана теоретическая возможность создания водородной бомбы.

В Советском Союзе в период с 1948. 1952 год также проводились разработки ламповых ЭВМ, как и в США, использовавшихся в основном военными. Одной из лучших ламповых ЭВМ советского производства следует признать машины серии БЭСМ (большая электронная счетная машина). Всего было выпущено шесть моделей БЭСМ-1 … БЭСМ-2 (ламповые) БЭСМ-3 … БЭСМ-6 уже на транзисторах. На момент создания каждая модель этой серии была лучшей в мире в классе универсальных ЭВМ.

Второе поколение ЭВМ 1955 – 1970 гг

Элементной базой второго поколения были транзисторы и полупроводниковые диоды. По сравнению с ламповыми, транзисторные ЭВМ были менее габаритны, потребляемая мощность также была намного ниже. Быстродействие ЭВМ второго поколения достигало до полумиллиона операций в секунду, появились внешние запоминающие устройства на магнитных носителях – магнитные ленты и магнитные барабаны, были созданы алгоритмические языки и операционные системы.

Третье поколение ЭВМ 1965 – 1980 гг

Для третьего поколения в качестве элементной базы использовались микросхемы малой и средней степени интеграции – в одном корпусе содержалось до нескольких десятков полупроводниковых элементов. Прежде всего это были микросхемы серий К155, К133. Быстродействие таких ЭВМ достигало 1 млн. операций в секунду, появились монохромные алфавитно — цифровые видеотерминалы (у машин второго поколения использовались телетайпы и специальные пишущие машинки).

Дальнейшее развитие элементной базы привело к созданию микросхем большой (БИС) и сверхбольшой (СБИС) степени интеграции. В одном корпусе таких микросхем содержится несколько сотен элементов. Эти микросхемы в СССР были представлены серией К580.

Четвертое поколение ЭВМ 1980 – настоящее время

Это поколение появилось на свет благодаря созданию фирмой Intel в 1971 году микропроцессора, что было явлением просто революционным. Чип Intel 4004 при размерах кристалла 3,2*4,2 мм, содержал 2300 транзисторов и имел тактовую частоту 108 КГц. Его вычислительная мощность была эквивалентна ЭВМ ENIAC. На базе этого устройства был создан новый тип компьютера микро – ЭВМ. Первые персональные компьютеры (ПК) были выпущены в 1976 году фирмой Apple, но в 1980 году фирма IBM перехватила инициативу, создав свой ПК IBM PC, архитектура которого стала международным стандартом профессиональных ПК. Современные процессоры второго поколения Core i7 фирмы Intel содержат свыше миллиарда транзисторных структур.

Рис. 4. М и кропро ц ессор Intel

Микроконтроллеры

Рассказ о развитии элементной базы радиоэлектроники был бы неполным, если хоть немного не упомянуть о микроконтроллерах столь популярных теперь в радиолюбительских конструкциях. По старой терминологии они назывались однокристальными микро — ЭВМ.

В одном многовыводном корпусе объединены микропроцессор, память программ и оперативная память, порты ввода – вывода информации. Для подсчета интервалов времени микроконтроллеры имеют таймеры, многие модели имеют аналоговые входы, что позволяет обходиться без внешних устройств АЦП. Контроллеры с модулем PWM (ШИМ) находят применение в схемах инверторных сварочных аппаратов и регулируемых приводов асинхронных электродвигателей. Есть даже контроллеры со встроенным радиоканалом, что позволяет осуществлять беспроводное соединение.

Первый микроконтроллер семейства MCS-48 Intel 8048 был выпущен в 1976 году. Он имел 27 линий ввода – вывода, восьмиразрядный таймер, память данных и память программ и, конечно же, микропроцессор. В настоящее время эти микроконтроллеры стали достоянием истории.

Читайте также:  Можно ли подключить к роутеру два компьютера

Контроллеры 8051

В 1980 году на свет появилось семейство Intel 8051 (MCS-51). Архитектура этого семейства оказалась настолько удачной, что микроконтроллеры этого семейства применяются до настоящего времени. Конечно, за это время разными фирмами (около полутора десятков) было разработано много моделей этого семейства. Интересный факт: система команд микропроцессора ни разу не изменялась со времен ее создания, что не помешало разработке новых моделей микроконтроллеров. Со временем MCS-51 уступает место более новым семействам.

Одним из таких стали микроконтроллеры PIC фирмы Microchip. Их популярность была вызвана, прежде всего, низкой ценой, высоким быстродействием, удобными портами. Поэтому МК PIC стали лучшими, когда требуется создать недорогую и достаточно простую систему управления.

Огромная популярность микроконтроллеров у радиолюбителей вызвана не только низкой ценой этих микросхем, а также тем, что для создания нового устройства достаточно просто записать в МК другую программу. Тогда даже ничего не изменяя в схеме можно, например, из частотомера сделать часы или многоканальный таймер.

ЭВМ пятого поколения

Фактически борьба за ее создание между фирмами началась еще в 1981 году. Пятое поколение ЭВМ предполагается похожим на человеческий мозг, управляемый голосом. Для создания такого искусственного интеллекта потребуется разработка совсем иных технологий, совсем других технических решений, создание совершенно новой элементной базы. Огромные усилия в этом плане приложены Японией, но результата пока еще не достигнуто. От Японии не хочет отставать и США – фирма IBM также проводит исследования в этой области. Но особых достижений пока тоже не видно.

Рис. 5. Современный микропроцессор

Элементная база бытовой электроники

Как уже было сказано выше, локомотивом развития элементной базы электроники стал быстро растущий, развивающийся рынок ПК. Благодаря этому современная бытовая техника напоминает специализированный компьютер. Телевизоры, домашние кинотеатры, проигрыватели DVD дисков имеют такие эксплуатационные параметры, которые лет двадцать назад просто невозможно было представить.

Даже стиральные машины, холодильники, простые новогодние гирлянды управляются микроконтроллерами. Современные поющие и говорящие детские игрушки, сделанные в Китае, также с микроконтроллерным управлением. Кстати, поразительный факт: еще в шестидесятые годы двадцатого столетия китайцы не могли наладить даже выпуск детекторных приемников, а теперь почти вся электроника делается в Китае.

В промышленности также любое современное устройство управления техпроцессом, даже не очень сложное построено на основе микроконтроллеров и, как правило, имеет интерфейс для подключения к ПК. Такой интерфейс имеют, например, электронные счетчики электроэнергии, что позволяет использовать их в системах автоматического учета.

Надежность современных электронных компонентов достаточно высока. Тем не менее, нередки случаи, когда любая электронная техника приходит в негодность, нуждается в ремонте. В случае поломки бытовой электронной техники не всегда возможно отнести неисправное устройство в специализированную мастерскую, просто не везде они есть. Тогда на помощь приходят радиолюбители, ремонтирующие технику в своих домашних мастерских.

Квалификация таких домашних мастеров, как правило, очень высокая, ведь ремонтируется весьма широкий спектр электронной техники: от простых дверных звонков до спутниковых систем телевидения. Об устройстве и организации таких мастерских на дому будет рассказано в следующей статье.

Элементной базой в ЭВМ называется их основная электронная составляющая. Эта составляющая меняется в зависимости от поколения компьютеров. Поколения элементной базы ЭВМ объясняют историю развития компьютеров на основе эволюционирующих технологий. С каждым новым поколением компьютерные схемы, их размеры становились все миниатюрнее, скорость обработки информации удваивалась, память стала больше, а удобство и надежность улучшались. Временная шкала, заданная для определения каждого поколения, важна для понимания того, что является элементной базой ЭВМ. Но она не определена до конца и считается довольно условной. Поколения элементной базы фактически основаны на эволюционирующей технологии чипов, а не на каких-либо конкретных временных рамках.

Первое поколение ЭВМ

Пять поколений компьютеров можно охарактеризовать электрическим током, протекающим:

  • в вакуумных трубках;
  • в транзисторах;
  • в интегральных схемах;
  • в микропроцессорных чипах;
  • в интеллектуальных устройствах, способных к искусственному интеллекту.

Первое поколение ЭВМ появилось в 1940-е-1950-е годы. Компьютеры первого поколения на самом деле были первыми универсальными и настоящими цифровыми компьютерами. Они появились, чтобы заменить электромеханические системы, которые были слишком медленными для назначенных задач. Первые компьютерные генераторы использовали вакуумные трубки для коммутации. Запечатанное стекло позволяло, чтобы ток протекал по беспроводной сети от нитей к металлическим пластинам.

Как работали первые компьютеры

Элементная база компьютера, трубки, были изготовлены из герметичных стеклянных емкостей размером с лампочку. В системе не было движущихся частей. Элементной базой первого поколения были лампы, которые назывались диодами и триодами. Вход и выход осуществлялись при помощи перфокарт, магнитных барабанов, пишущих машинок и считывателей перфокарт. Интерфейс систем был выполнен с использованием плагинов и машинного языка.

Элементную базу ЭВМ первого поколения было сложно использовать. Техники соединяли электрические цепи, подключив многочисленные кабели к разъемам. Затем они использовали специальные перфокарты и ждали несколько часов, чтобы получить результат для какой-либо формы вычислений. Первые ЭВМ были настолько большими, что занимали целые комнаты. Язык ассемблера и программное обеспечение операционной системы еще отсутствовали. Системы могли решать только одну проблему за раз. Эти машины были предназначены для операций низкого уровня, и программирование выполнялось с использованием только двоичных цифр 0 и 1.

ENIAC — самый мощный из первых компьютеров

Одним из самых выдающихся компьютеров в эту эпоху был ENIAC (Electronic Numerical Integrator and Computer), спроектированный и построенный инженером Джоном Мокли и Джоном Преспером Эккертом из Университета Пенсильвании. Его сборка была выполнена командой из пятидесяти человек. ENIAC был в 1000 раз быстрее, чем предыдущие электромеханические компьютеры , но гораздо более медленным при перепрограммировании.

Среди прочего, ENIAC использовался для изучения возможностей термоядерного оружия, стрельбы баллистической артиллерией и термическим зажиганием двигателя, а иногда для прогнозов погоды. Эти системы были огромны по размеру и занимали целые комнаты, используя много электроэнергии, что сделало их источником невыносимого тепла.

Универсальный автоматический компьютер

UNIVAC (универсальный автоматический компьютер) был создан все теми же инженерами — Джоном Мокли и Джоном Преспером Эккертом. Компьютер был первым в той же эпохе, который был разработан для коммерческих целей, помимо военного использования. Используя свою элементную базу, он довольно хорошо манипулировал алфавитом и цифрами и использовался Бюро переписи населения США для перечисления общего населения.

Позднее он применялся для составления отчетов по продажам компаний и даже для предсказаний результатов президентских выборов в 1952 году. В отличие от более 17 000 вакуумных труб в ENIAC, UNIVAC I использовал чуть более 5000 вакуумных ламп. Он был также вдвое меньше своего предшественника. Было продано более 46 этих ЭВМ.

Компьютеры второго поколения: 1950-1960-е годы

ЭВМ второго поколения представляли собой компьютеры, в которых вместо вакуумных ламп использовались транзисторы. Это и была элементная база второго поколения. Новые компьютеры были лучше, чем их предшественники во многом из-за сравнительно небольшого размера, скорости и более низкой стоимости. Транзисторы являются строительными блоками практически любого микрочипа, а также они более надежные, энергоэффективные и способны проводить электричество быстрее и лучше, чем вакуумные трубки.

Как и трубки, элементная база ЭВМ второго поколения, включавшая транзисторы, являлась переключателями или электронными затворами, которые используются для усиления или управления током или включения или выключения электрических сигналов. Транзисторы называются полупроводниками, поскольку они содержат элементы, которые находятся между проводниками и изоляторами.

Изобретение транзисторных полупроводников

Транзисторные полупроводники были изобретены в Bell Laboratories в 1947 году учеными Уильямом Шокли, Джоном Бардином и Уолтером Браттентом, но не выпускались до середины 1950-х годов. Инженеры и создатели новой элементной базы видели будущее компьютеров второго поколения в совершенствовании процедур ввода и вывода данных.

Первоначально эти процессы были похожи на последние модели компьютеров первого поколения. Работа являлась довольно трудоемкой и утомительной, потому что включала в себя труд несколько сотрудников, которые носили перфокарты из комнаты в комнату.

Пакетная система передачи данных

Для того чтобы ускорить процесс, была создана и реализована пакетная система. Она включала сбор нескольких заданий данных на несколько перфокарт и подачу их в магнитные ленты с использованием сравнительно небольшой и недорогой системы. IBM-1401 был одним из таких компьютеров. Для него использовалась операционная система IBM-7094 и Fortran Monitor System.

Читайте также:  Воск для декоративной штукатурки своими руками видео

Когда обработка данных была завершена, файлы переносились обратно на магнитную ленту. Используя меньшую систему, например, IBM-1401, данные можно было распечатать на несколько перфокарт в качестве вывода информации. Это были предвестники программного обеспечения операционной системы.

Характеристики компьютеров второго поколения

Затем начался процесс обновления ограничительного двоичного машинного кода до языков, которые полностью поддерживали символическое и буквенно-цифровое кодирование. Программисты теперь могли писать на ассемблерах и языках высокого уровня, таких как FORTRAN, COBOL, SNOWBALL и BASIC.

Ранние суперкомпьютеры были лишь некоторыми из машин, которые использовали транзисторы. Примерами этих систем были универсальный блок UNIVAC LARC от Sperry Rand (1960) и IBM-7030 Stretch supercomputer (1961) и мэйнфрейм CDC 6600 (1963).

Третье поколение компьютеров: 1960-1970-е годы

Элементная база третьего поколения ЭВМ — это интегральные схемы и многопрограммное программирование. Компьютеры третьего поколения использовали микросхему интегральной схемы (ИС) вместо транзисторов. Реализация этих компьютеров также соответствовала Закону Мура, в котором отмечалось, что размеры транзисторов снижались настолько быстро, что их количество на схеме удваивалось каждые 2 года.

Преимущества интегральных схем

Полупроводниковая ИС включала огромное количество транзисторов, конденсаторов и диодов. Затем они были напечатаны на отдельных частях платы. Ручное подключение конденсаторов и диодов в транзисторах было трудоемким и не полностью надежным. Джек Килби из Texas Instruments и Роберт Нойс из Fairchild Corporation отдельно друг от друга обнаружили преимущества интегральных схем в 1958 и 1959 годах соответственно. Килби построил свою ИС на германии, в то время как Noyce — на кремниевой микросхеме.

Первой системой, использующими ИС, была IBM 360, применявшаяся для обработки как коммерческих, так и научных заданий. После размещения нескольких транзисторов на одном чипе, помимо снижения стоимости, скорость и производительность любого одного компьютера также значительно увеличились. С момента своего изобретения скорость ИС удваивалась каждые два года, что еще больше сократило размер и стоимость компьютеров.

Использование интегральных схем в современных компьютерах

Сегодня почти все электронные устройства используют некоторые формы интегральных схем, размещенных на печатных платах. В отличие от схемы ИС, взаимодействие с компьютерами улучшилось. Вместо перфокарт для ввода и вывода данных, отображение информации происходит через визуальные дисплеи, применяются клавиатуры, а также улучшенные периферийные устройства ввода.

Компьютеры теперь используют программное обеспечение операционной системы для управления оборудованием и ресурсами, что позволило системам одновременно запускать разные приложения. Это произошло из-за централизованных приложений, которые контролировали распределение памяти. Компьютеры стали доступны широкой аудитории из-за размера и справедливой стоимости.

Это поколение также открыло концепцию “компьютерного семейства”, которая побудила производителей придумать компьютерные компоненты, совместимые с другими системами. Примерами этих систем были суперкомпьютеры Scientific Systems Systems Sigma 7 (1966) и суперкомпьютеры IBM-360 (1964) и CDC 8600 (1969).

Четвертое поколение компьютеров: от 1970-х до настоящего времени

Микропроцессор, ОС и графический интерфейс — элементная база современных компьютеров. Рождение микропроцессора было в то же время рождением микрокомпьютера. Это также соответствовало закону Мура, который предсказал экспоненциальный рост транзистора и микрочипов, начиная с 1965 года. Компания Intel, ее инженеры Тед Хофф, Федерико Фаггин и Стэн Мазор в ноябре 1971 года представили первый в мире одночиповый микропроцессор Intel 4004.

То, что в первом поколении заполняло всю комнату, теперь можно было установить на ладони. Само собой, новый микрочип был таким же мощным, как компьютер ENIAC с 1946 года. Четвертое поколение и его элементарная база играет важную роль в создании различных устройств.

Процессор Intel 4004

Вскоре производители начали интегрировать эти микрочипы в свои новые компьютеры. В 1973 году был выпущен Xerox Alto из PARC. Это был настоящий персональный компьютер, в который вошли Ethernet-порт, мышь и графический интерфейс с битовым отображением, первый в своем роде. В 1974 году Intel представила 8-разрядный микропроцессор общего назначения с названием “8808”. Затем программист Гэри Арлен Килдалл приступил к созданию программного обеспечения на базе диска, известного как “Программа управления для микрокомпьютеров” (CPM). Оно стало прообразом современной элементной базы ПК.

Первый домашний персональный компьютер

В 1981 году International Business Machine представила свой первый компьютер для дома, в котором работал процессор 4004. Он был известен как IBM PC. Компания сотрудничала с Биллом Гейтсом, который купил Disk Operating System из Seattle Computer Product и распространил его с нового компьютера IBM. Архитектура IBM PC стала стандартной моделью рынка.

Создание операционной системы Windows

Apple под руководством Стива Джобса изменила программную игру, когда в 1984 году выпустила компьютер Apple Macintosh с улучшенным графическим интерфейсом (графический интерфейс пользователя), используя идею интерфейса, полученную от Xerox PARC. Обе программы управления для микрокомпьютера и операционной системы диска были операционными системами на основе командной строки, когда пользователь должен взаимодействовать с компьютером с помощью клавиатуры.

После успеха графического интерфейса Apple Microsoft интегрировала оболочную версию Windows в версии DOS 1985 года. Windows использовалась в течение следующих 10 лет, пока она не была заново изобретена как Windows 95. Это было настоящее программное обеспечение для операционной системы со всеми необходимыми утилитами.

Появление Linux

В то время как программное обеспечение стало обычным делом и корпорации начали брать за него деньги, новое движение программистов запустило Linux в 1991 году. Во главе с Linux Torvalds они стали инициаторами бесплатного проекта операционной системы с открытым исходным кодом под названием Linux. Помимо Linux, другие операционные системы с открытым исходным кодом и бесплатное программное обеспечение были распространены для обслуживания офисных, сетевых и домашних компьютеров.

Распространение мобильных устройств

В 1980-х и 2000-х годах персональные компьютеры и настольные компьютеры стали обычным явлением. Они были установлены в офисах, школах и домах, их стоимость стала приемлемой, а размер — компактным. Программное обеспечение, работающее на этих компьютерах, также стали доступнее. Вскоре микропроцессоры вышли из под монополизации настольными компьютерами и перешли на другие платформы.

Сначала появился ноутбук, а затем планшеты и смартфоны, консоли, встроенные системы, смарт-карты, которые стали популярными из-за необходимости использования Интернета во время движения. Согласно недавним исследованиям, мобильные телефоны составляли 60% всех цифровых устройств по всему миру.

Пятое поколение компьютеров: настоящее и будущее

Компьютеры пятого поколения построены на технологическом прогрессе, полученном в предыдущих поколениях компьютеров. Современные инженеры надеются на улучшение взаимодействия между людьми и машиной путем использования человеческого интеллекта и больших данных, накопленных с самого начала эпохи цифровых технологий. Они исходят из теории концепции и реализации искусственного интеллекта (AI) и машинного обучения (ML).

AI — вот что является элементной базой ЭВМ поколения 5. Это реальность, которая стала возможной благодаря параллельной обработке и сверхпроводникам. Компьютерные устройства с искусственным интеллектом все еще находятся в разработке, но некоторые из этих технологий начинают появляться и использоваться, например, распознавание голоса. AI и ML могут быть неодинаковыми, но используются взаимозаменяемо, чтобы создать устройства и программы, которые достаточно интеллектуальны для взаимодействия с людьми, другими компьютерами, средой и программами.

Суть пятого поколения будет заключаться в использовании этих технологий, чтобы в конечном итоге создать машины, которые могут обрабатывать и реагировать на естественный язык, а также иметь возможность учиться и самостоятельно организовываться.

Распространение вычислительных устройств с возможностью их самообучения, реагирования и взаимодействия различными способами, основанными на приобретенном опыте и окружающей среде, также придало импульс концепции IoT (Интернет вещей). На своем пике и с правильными алгоритмами компьютеры, вероятно, будут демонстрировать высокие уровни обучения, превосходя интеллект людей. Многие проекты Искусственного интеллекта уже внедряются, а другие все еще находятся на стадии развития.

Пионерами в этой сфере являются Google, Amazon, Microsoft, Apple, Facebook и Tesla. Первые реализации начались на интеллектуальных домашних устройствах, которые предназначены для автоматизации и интеграции действий в доме, аудио и визуальных устройствах, а также автомобилей с автопилотом.

Ссылка на основную публикацию
Adblock detector