Формула периода колебательного контура

Формула периода колебательного контура

Формула Томсона

Наша задача в первую очередь будет заключаться в определении периода (или частоты) свободных электрических колебаний. Правда, основываясь на аналогии между свободными механическими и свободными электрическими колебаниями, можно сразу записать выражения для частоты и периода свободных электрических колебаний.

Действительно, так как в формуле для циклической частоты свободных колебаний шарика на пружине — величина k аналогична , а m — индуктивности L, то частота свободных электрических колебаний должна быть равна:

Для периода свободных колебаний можно записать:

Формула (2.3.2) называется формулой Томсона в честь английского физика, который ее впервые вывел.

Полученные нами результаты правильны. Однако все же считать их достаточно строго доказанными нельзя. Необходимо показать, что уравнение, описывающее электрические колебания в контуре, в математическом отношении не отличается от уравнения, описывающего свободные механические колебания. Лишь после этого мы с полной уверенностью сможем утверждать, что механические и электрические колебания управляются одними и теми же количественными законами. А это и есть самое важное.

Уравнение, описывающее процессы в колебательном контуре

Основное уравнение для процессов в колебательном контуре можно записать, используя закон Ома в дифференциальной форме:

Здесь i — плотность тока, γ — удельная проводимость, — напряженность потенциального электрического поля в проводнике, созданного поверхностными зарядами, ст — напряженность поля сторонних сил. В случае колебательного контура без источников тока ст — это напряженность вихревого (непотенциального) поля.

Рассмотрим колебательный контур, содержащий все три основных элемента: конденсатор емкостью С, катушку индуктивностью L и резистор сопротивлением R (рис. 2.7).

Сопротивлением катушки, пластин конденсатора и соединительных проводов пренебрежем. Весь контур между точками 1 и 2 разобьем на малые элементы . Положительное направление обхода контура выберем по часовой стрелке. Запишем уравнение (2.3.3) для каждого элемента и умножением обеих частей на приведем его к виду:

Теперь просуммируем уравнения (2.3.4), записанные для всех элементов . контура между точками 1 и 2:

Выясним физический смысл каждого из членов уравнения (2.3.5). Рассмотрим сумму в левой части уравнения. Для всей цепи, кроме резистора, удельная проводимость бесконечна, так как мы сопротивление этой части цепи полагаем пренебрежимо малым. Далее, будем считать резистор состоящим из тонкой проволоки постоянного поперечного сечения площадью S и постоянной удельной проводимости γ. Тогда плотность тока i будет направлена по и приблизительно постоянна по сечению. Поэтому можно принять, что

где i — сила тока в цепи.

При этих предположениях

где i длина проволоки резистора.

есть не что иное, как сопротивление резистора.

Рассмотрим первый член правой части уравнения (2.3.5). Он численно равен работе кулоновского поля, созданного поверхностными зарядами проводника, при перемещении единичного заряда вдоль контура от точки 1 к точке 2, т. е. разности потенциалов (или напряжению) на конденсаторе:

где q — заряд правой пластины конденсатора.

Второй член правой части уравнения (2,3.5) численно равен работе сторонних сил (вихревого электрического поля) в контуре по перемещению единичного заряда, т. е. представляет собой ЭДС самоиндукции. Согласно закону электромагнитной индукции:

Теперь силу тока выразим через производную заряда конденсатора. Здесь имеется небольшая тонкость. При выбранном направлении обхода контура сила тока, направленного от правой пластины конденсатора, положительна. Эта пластина разряжается и ее заряд уменьшается. Изменение заряда Δq за малый интервал времени Δt отрицательно. Для того чтобы сила тока была положительной величиной, ее надо определить так:

Если бы вместо заряда q правой пластины мы взяли заряд левой пластины, то i = +q’. В напхем случае справедливо равенство (2.3.10). Окончательно уравнение (2.3.5) запишем в форме:

Это и есть основное уравнение для процессов в колебательном контуре. Оно аналогично уравнению (1.9.5) с правой частью, равной нулю. (Такое уравнение будет описывать свободные затухающие колебания.)

Строгий вывод формулы Томсона

Решение уравнения (2.3.11) в общем случае, т. е. нахождение зависимости заряда и силы тока от времени, слипхком сложно. Мы ограничимся случаем, когда резистор в контуре отсутствует и членом iR = -q’R можно пренебречь. Тогда уравнение (2.3.11) упрощается и его можно записать в виде

Теперь, наконец, вы в полной мере сможете оценить те усилия, которые были затрачены для изучения колебаний груза на пружине и математического маятника. Ведь уравнение (2.3.12) ничем, кроме обозначений, не отличается от уравнения (1.2.4), описывающего колебания груза на пружине. При замене m ⇒ L, аx = х" ⇒ q", k ⇒ и x ⇒ q мы в точности получим уравнение (2.3.12) вместо (1.2.4).

Но уравнение (1.2.4) или эквивалентное ему уравнение (1.4.1) нами уже решено. Поэтому, зная, как колеблется груз, мы сразу можем сказать, как происходят колебания в контуре.

Разделив правую и левую части уравнения (2.3.12) на L и введя обозначение

А это то же самое, что и уравнение (1.4.1). В уравнении (1.4.1) ω — циклическая частота колебаний. Значит, и величина ω, определяемая выражением (2.3.13), тоже является частотой колебаний, но теперь уже частотой электрических колебаний (заряда, силы тока и других величин). Период свободных колебаний в контуре равен:

Это и есть формула Томсона.

Конечно, и без каких-либо уравнений мы могли бы сообразить, что период Т должен увеличиваться с ростом индуктивности L и емкости С. Действительно, при увеличении L сила тока медленнее нарастает со временем и медленнее падает до нуля. А чем больше емкость, тем большее время требуется для перезарядки конденсатора. Но получить формулу (2.3.15) строго без уравнения (2.3.14) мы бы не смогли.

Гармонические колебания заряда и силы тока

Подобно тому, как координата при механических колебаниях меняется по гармоническому закону, точно также заряд конденсатора меняется по закону синуса или косинуса:

Здесь qm — амплитуда колебаний заряда, а φ — начальная фаза колебаний. Эти величины определяются начальными условиями, т. е. значениями заряда и силы тока в начальный момент времени: q(0) = q и i(0) = i.

Если в начальный момент времени q(0) = q, а i(0) = i, то колебания совершаются по косинусоидальному закону с нулевой начальной фазой* и амплитудой qm = q:

Точно так же изменяется координата груза на пружине, если вы вывели груз из положения равновесия и не сообщили ему начальной скорости.

Сила тока также совершает гармонические колебания. Если q = q cos (ωt + φ), то

где Im = ωqm — амплитуда колебаний силы тока. Колебания силы тока смещены по фазе относительно колебаний заряда на . При начальных условиях q(0) = q, i(0) = 0

Колебания заряда и силы тока для этого случая графически представлены на рисунке 2.8.

Читайте также:  Запах который отпугивает крыс

В действительности из-за энергетических потерь колебания будут затухающими. Чем больше сопротивление R, тем больше будет период колебаний. При достаточно большом сопротивлении колебания не возникают. Конденсатор разрядится, но перезарядки не произойдет.

* Именно такой случай описан в § 2.2, когда колебания в контуре начинались после замыкания цепи предварительно заряженного конденсатора.

«Физика – 11 класс»

Уравнение, описывающее процессы в колебательном контуре

Есть колебательный контур, сопротивлением R которого можно пренебречь.

Уравнение, описывающее свободные электрические колебания в контуре, можно получить с помощью закона сохранения энергии.
Полная электромагнитная энергия W контура в любой момент времени равна сумме его энергий магнитного и электрического полей:

Полная энергия не меняется с течением времени, если сопротивление R контура равно нулю, тогда производная полной энергии по времени равна нулю.
Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

Физический смысл вышеприведенного уравнения состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля.
Знак «—» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот).

После вычисления производных в уравнении, получается

Производная заряда по времени представляет собой силу тока в данный момент времени:

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому как производная скорости по времени (ускорение) есть вторая производная координаты по времени.
Тогда основное уравнение, описывающее свободные электрические колебания в контуре:

Полученное уравнение ничем, кроме обозначений, не отличается от уравнения, описывающего колебания пружинного маятника.

Период свободных колебаний в контуре

Формула Томсона
В основном уравнении коэффициент представляет собой квадрат циклической частоты для свободных электрических колебаний:

Период свободных колебаний в контуре, таким образом, равен:

Эта формула называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее впервые вывел.

Период свободных колебаний зависит от L и С.
При увеличении индуктивности L ток медленнее нарастает со временем и медленнее падает до нуля.
А чем больше емкость С, тем большее время требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока.

Координата при механических колебаниях изменяется со временем по гармоническому закону:

Заряд конденсатора меняется с течением времени по такому же закону:

где
qm — амплитуда колебаний заряда.

Сила тока также совершает гармонические колебания:

где
Im = qmω — амплитуда колебаний силы тока.
Колебания силы тока опережают по фазе на колебания заряда.

Точно так же колебания скорости тела в случае пружинного или математического маятника опережают на колебания координаты (смещения) этого тела.

В действительности, из-за неизбежного наличия сопротивления электрической цепи, колебания будут затухающими.
Сопротивление R также будет влиять и на период колебаний, чем больше сопротивление, тем бо́льшим будет период колебаний.
При достаточно большом сопротивлении колебания совсем не возникнут.
Конденсатор разрядится, но перезарядки его не произойдет, энергия электрического и магнитного полей перейдет в тепло.

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные колебания. Физика, учебник для 11 класса – Класс!ная физика

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур — это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания — периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент: . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия. Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же — координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть: . Конденсатор перезаряжается — на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия. Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть: . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Аналогия. Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти: . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Читайте также:  Рисунок на тыкве красками

Четвёртая четверть: . Ток убывает, конденсатор заряжается (рис. 8 ).

Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода: . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Данный момент идентичен моменту , а данный рисунок — рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия. Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

Здесь, как вы уже поняли, — жёсткость пружины, — масса маятника, и — текущие значения координаты и скорости маятника, и — их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона. Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими, если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока — ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной 0)’ (I > 0)’ /> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора — это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае — заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если 0′ I > 0′ /> , то заряд левой пластины возрастает, и потому 0′ dot > 0′ /> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если — функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз — по закону синуса:

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Читайте также:  Газовые плитки для дачи для баллонного газа

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс — резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
help@ege-study.ru (круглосуточно)

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса – от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум – репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля – до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги – 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» – всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных

Ссылка на основную публикацию
Adblock detector