Устройство винтового блока компрессора

Устройство винтового блока компрессора

Сайт о компрессорном оборудовании для промышленного применения

В данной статье мы расскажем об основных элементах конструкции винтового компрессора и о его устройстве.

В настоящее время производством винтовых компрессоров занимается достаточно большое количество компаний по всему миру. Однако, как автомобиль состоит из кузова, двигателя и трансмиссии, так и винтовой компрессор разных производителей состоит из компонентов, имеющих различия в конструкции, но выполняющих одну и ту же задачу при работе агрегата.

Любой винтовой компрессор может быть схематично представлен следующим образом:

Основные элементы винтового компрессора

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

5 – масляный резервуар

7 – клапан минимального давления

9 – масляный фильтр

10 – воздушный радиатор

11 – масляный радиатор

13 – обратный клапан

14 – сетчатый фильтр

15 – выход сжатого воздуха

Входной фильтр

На входе винтового компрессора обязательно устанавливается фильтр, задачей которого является предотвращение проникновения в компрессор вместе с засасываемым воздухом пыли и твердых механических частиц.

Он представляет собой, как правило, цилиндрический патрон из гофрированной бумаги и может устанавливаться как открыто, так и в корпусе.

Воздушный фильтр винтового компрессора

Размер ячейки входного фильтра в большинстве случаев составляет 10 мкм, а площадь его поверхности соответствует производительности компрессора.

Всасывающий клапан

Наличие на входе винтового компрессора всасывающего клапана (иногда его еще называют регулятором всасывания) является отличительной особенностью компрессоров данного типа. Закрытие и открытие всасывающего клапана позволяет легко переводить компрессор в режим холостого хода и работы под нагрузкой соответственно.

Запорный элемент всасывающего клапана имеет вид поворотного (заслонки) или поступательно двигающегося диска с уплотнением. Положение запорного элемента изменяется под действием сжатого воздуха, подаваемого во внутренний или внешний пневмоцилиндр из масляного резервуара через управляющий электромагнитный клапан.

Всасывающий клапан винтового компрессора

Всасывающий клапан винтового компрессора

Запуск винтового компрессора всегда происходит при закрытом всасывающем клапане. Но для того, чтобы в масляном резервуаре произошло накопление сжатого воздуха с давлением, достаточным для последующего воздействия на поршень управляющего пневмоцилиндра, всасывающий клапан имеет канал небольшого сечения с обратным клапаном.

Винтовой блок

Основным рабочим элементом компрессора является винтовой блок, в котором собственно и происходит процесс сжатия всасываемого через входной фильтр воздуха.

В корпусе винтового блока расположены два вращающихся ротора – ведущий и ведомый. При их вращении происходит движение воздуха от всасывающей стороны к нагнетающей с одновременным уменьшением объема межроторных полостей, т.е. сжатие.

Принцип сжатия воздуха в винтовом блоке

Зазор между роторами уплотняется находящимся в корпусе винтового блока маслом. Масло также служит для смазывания подшипников и отвода тепла, образующегося при сжатии воздуха.

Также существуют безмасляные винтовые компрессоры классического исполнения (без уплотняющей жидкости) и с водяным впрыском в камеру сжатия вместо масла.

Электродвигатель

Для передачи вращения ведущему ротору винтового блока, как правило, используется обычный трехфазный асинхронный электродвигатель.

Исключение составляют мобильные винтовые компрессоры, в которых в качестве источника вращения используется дизельный двигатель.

Вращение от вала двигателя ведущему ротору винтового блока может передаваться как при помощи клиноременной передачи:

или через муфту с эластичным элементом (так называемый «прямой привод»).

В некоторых случаях применяется шестеренчатый привод (в компрессорах большой производительности).

Нередко бывает необходимо регулировать производительность винтового компрессора, изменяя частоту вращения вала двигателя. В этом случае электропитание двигателя осуществляют при помощи специального устройства – частотного преобразователя.

Применение частотного преобразователя позволяет в широких пределах регулировать производительность винтового компрессора в зависимости от реальной потребности в сжатом воздухе, не прибегая к переводу агрегата в режим холостого хода закрытием всасывающего клапана.

Масляный резервуар

Масляный резервуар играет очень важную роль в работе винтового компрессора:

  • выполняет роль первичного аккумулятора сжатого воздуха;
  • увеличивает объем масляной системы компрессора и, соответственно, количества масла, необходимого для эффективного отвода тепла, образовывающегося при сжатии воздуха;
  • работает, как отделитель основной массы масла от сжатого воздуха, т.к. масло-воздушный поток попадает в резервуар из винтового блока по касательной к его цилиндрической поверхности – как бы «закручивается».

Сепаратор

Для того, чтобы выходящий из винтового компрессора сжатый воздух содержал минимальное количество масла, в его конструкции обязательно применяется сепаратор.

Сепаратор может быть внешним (в компрессорах небольшой мощности) и встроенным в масляный резервуар.

Внешний вид встроенного сепаратора:

Сепаратор в разрезе с указанием потока масла и воздуха:

Сепаратор в разрезе

Благодаря наличию в конструкции винтового компрессора сепаратора содержание масла в сжатом воздухе на выходе не превышает 3 мг/м 3 .

Клапан минимального давления

Для нормальной циркуляции масла при работе винтового компрессора необходимо, чтобы давление в масляном резервуаре не опускалось ниже определенного минимально необходимого уровня.

Когда в магистрали, на которую работает винтовой компрессор, уже присутствует давление, это условие выполняется. А вот в случае, когда компрессор используется для заполнения пустого воздухосборника, для создания в масляном резервуаре повышенного давления используется клапан минимального давления.

Клапан минимального давления

Клапан минимального давления в разрезе:

Клапан минимального давления в разрезе

Этот клапан открывается при давлении на его входе, превышающем определенное значение, которое задается регулировкой сжатия закрывающей клапан пружины. Типичным для винтовых компрессоров давлением открытия клапана является значение 4÷4,5 бар.

Термостат

В винтовом компрессоре, как и в двигателе автомобиля, существует два круга системы охлаждения – малый и большой.

Сразу после запуска компрессора масло в нем циркулирует по малому кругу, что обеспечивает довольно быстрый рост температуры. Это необходимо, чтобы при сжатии воздуха не происходило выпадение конденсата и смешивание его с маслом, значительно ухудшающее его эксплуатационные свойства.

Малый круг охлаждения

После достижения определенного значения температуры масла термостат открывается, направляя поток циркуляции по большому кругу – через охлаждаемый вентилятором радиатор.

Большой круг охлаждения

Как правило, открытие термостата начинается при температуре масла +55°С и полностью завершается при температуре +70°С.

Масляный фильтр

В процессе работы винтового компрессора в масле могут присутствовать механические примеси – продукты износа движущихся частей и частицы пыли, размер которых меньше размера ячейки входного фильтра.

Для очистки масла от этих примесей в циркуляционный контур компрессора включается масляный фильтр.

Масляный фильтр в разрезе

Воздушный радиатор / Масляный радиатор / Вентилятор

Для охлаждения сжимаемого винтовым компрессором воздуха его пропускают через радиатор, который обдувается вентилятором. Температура сжатого воздуха на выходе компрессора, как правило, превышает температуру окружающей среды не более, чем на 20÷30 °С.

Для охлаждения циркулирующего в компрессоре масла служит масляный радиатор. Обычно воздушный и масляный радиаторы объединены в единый блок и обдуваются одним вентилятором (двумя в компрессорах большой мощности).

Обычно вентилятор приводится в действие отдельным электродвигателем.

В небольших компрессорах зачастую для обдува радиаторов используется вентилятор, входящий в состав приводного двигателя.

Вентилятор охлаждения на двигателе

Обратный клапан / Сетчатый фильтр

Масло, отделяемое от сжатого воздуха в сепараторе, требуется вернуть в циркуляционный контур компрессора. Для этого используется специальная масловозвратная линия, имеющая в своем составе обратный клапан и сетчатый фильтр.

Для того, чтобы процесс возврата масла можно было наблюдать в реальном времени (это необходимо в диагностических целях), некоторые детали масловозвратной линии выполняют прозрачными.

Выход сжатого воздуха

На выходной патрубок винтового компрессора необходимо установить запорный кран, позволяющий отключить компрессор от магистрали сжатого воздуха на время проведения технического обслуживания или ремонта.

Также для соединения выхода компрессора с магистралью рекомендуется использовать гибкое соединение (металлорукав) для устранения влияния температурных и вибрационных деформаций трубопровода на соединение.

Шаровый кран и металлорукав

Мы рассмотрели основные компоненты конструкции винтового компрессора и их назначение. В следующих статьях мы рассмотрим устройство данных узлов более подробно.

Все возникшие вопросы вы можете задать в форме ниже. Мы ответим в течение 1-2 рабочих дней.

Константин Широких & Сергей Борисюк

Решил воспользоваться неожиданной для меня возможностью получить ответ на адрес моей почты на основе Вашей статьи «Конструкция/устройство винтовых компрессоров».

1) Клапан минимального давления. «Типичным для винтовых компрессоров давлением открытия клапана является значение 4-4.5 бар».

Не означает ли это, что закрывающая клапан пружина при рабочем ходе компрессора постоянно отбирает у него давление 4-4.5 бар и, соответственно, 24-27% электроэнергии теряется? (если ее затраты 6% на 1 бар, как принято считать?).

Если это так, то, например, при рабочем давлении компрессора 7.5 бар, в сеть сжатый воздух попадает после клапана с давлением 7,5-4,5=3,0 бар?.

С уважением, Игорь.

Теперь по существу вопроса…

Что значит «в сеть сжатый воздух попадает с давлением 7,5-4,5=3,0 бар?»?

Клапан минимального давления (КМД) необходим для того, чтобы давление в масляном резервуаре не опускалось ниже необходимого для нормальной циркуляции масла значения и не зависело от давления в сети.

А давление в сети может быть и «нулевым» — представьте, что выход компрессора просто открыт в атмосферу. При этом давление в масляном резервуаре все равно будет 4-4,5 бар. И компрессор будет «выдувать» в эту атмосферу ровно столько воздуха, сколько «засасывает».

Теперь представьте, что компрессор начинает заполнять систему (ресивер) определенного объема. Масляный резервуар наполняется воздухом очень быстро — его объем очень мал по сравнению с ПРОИЗВОДИТЕЛЬНОСТЬЮ компрессора. КМД открывается и воздух начинает проходить в ресивер, давление в котором плавно растет «ОТ НУЛЯ».

Читайте также:  Маникюрное зеркало с подсветкой

Как только давление в ресивере СРАВНИВАЕТСЯ с давлением открытия КМД, давления в масляном резервуаре и ресивере начинают РАСТИ СИНХРОННО!

5 бар в масляном резервуаре — 5 бар в ресивере. 6 бар в масляном резервуаре — 6 бар в ресивере. И так далее.

Сопротивление ОТКРЫТОГО КМД очень мало.

О каких потерях Вы говорите?

Спасибо за подробный ответ, понятный мне до слов: «Сопротивление ОТКРЫТОГО КМД очень мало».

С моей точки зрения, сопротивление клапана было бы действительно относительно мало, если бы в рабочем режиме компрессора поршень с клапаном не испытывал давление 4.5 бар сжатой пружины на закрытие.

То есть, если бы каким-то образом клапан был механически «защемлен» в открытом положении при давлении 7.5 бар и не испытывал «противотока » пружины в 4.5 бар. Есть разница в том -«защемлен» клапан или нет.

В настоящий момент я готовлю материал, который, надеюсь, ответит на все Ваши вопросы.

А пока обратите пристальное внимание на тот факт, что в ЗАКРЫТОМ состоянии на клапан КМД действует ОТКРЫВАЮЩЕЕ его давление со стороны масляного резервуара и ЗАКРЫВАЮЩЕЕ усилие пружины. При выравнивании данных усилий клапан начинает ОТКРЫВАТЬСЯ и сжатый воздух поступает в наполняемую систему (ресивер и т.п.).

Давление в ресивере начинает расти, сравнивается с давлением в масляном резервуаре и далее они растут СИНХРОННО. При этом давление в ресивере действует на КМД как ОТКРЫВАЮЩЕЕ (там есть манжета, см. чертеж в статье «Конструкция клапана минимального давления»). Поэтому ЗАКРЫВАЮЩЕЕ действие на КМД всегда определяется только усилием пружины.

Если бы не было упомянутой выше манжеты, клапан работал бы как регулятор давления «после себя». Т.е. давление в ресивере суммировалось бы с закрывающим действием пружины (давило бы на клапан «сверху»). Но описание принципа работы регуляторов давления выходит за рамки обсуждаемого здесь вопроса.

Спасибо за безупречные, высококвалифицированные (изложенные на понятном техническом языке) ответы на мои вопросы. Теперь мне по клапану КМД все ясно.

Даже как-то неловко стало за свое второе письмо от 06.10.2016г.

инженер-гидротехник Игорь Хлебников.

У нас следующая ситуация.

Винтовой компрессор несколько часов после включения работает нормально, потом как будто что то перекрывает частично выход воздуха и компрессор начинает переключаться с холостого хода на рабочий и обратно буквально через несколько секунд.

При этом постепенно падает давление в системе (ресивер), а давление в компрессоре прыгает от 7,0 до 8,0 атмосфер.

Судя по Вашему описанию, в трубопроводе, идущем от компрессора к ресиверу действительно имеется какое-то препятствие.

Для его локализации необходима дополнительная информация:

— наличие на трубопроводе дополнительного оборудования (осушитель, фильтры, влагоотделители, запорная арматура);
— если имеется осушитель, то какого он типа (адсорбционный, рефрижераторный).

Такое поведение (неполадка проявляется через несколько часов после включения компрессора) характерна для систем, имеющих в своем составе рефрижераторный осушитель. При недостаточном потоке горячего сжатого воздуха через осушитель (если пропускная способность его значительно превосходит производительность компрессора), а также при его неисправности или упрощенной конструкции (без обратной связи по температуре в холодильном контуре) в трубопроводе внутри осушителя замерзает конденсат, образуя «ледяную пробку». Она и является препятствием для прохождения сжатого воздуха.

Если я прав в своих предположениях, то Вам в первую очередь следует обратить внимание именно на осушитель. Он не должен охлаждать сжатый воздух до температуры ниже +3 градусов Цельсия.

С уважением, Сергей.

Спасибо большое Сергей.

Пока не знаю какого типа осушитель но данная проблема началась после замены компрессора (мотора) холодоосушителя. ремонтировала подрядная организация. после ремонта в определенный момент (обычно в режиме холостого хода компрессора) начинается вибрация всего холодоосушителя, а подрядчики ничего внятного не отвечают вот и приходится решать проблемы самостоятельно.

Напомним еще раз кратко основные достоинства винтовых компрессоров:

  • высокая надежность;
  • длительный ресурс работы;
  • возможность непрерывного круглосуточного функционирования;
  • простота монтажа и подключения;
  • сравнительно небольшие эксплуатационные затраты;
  • наличие системы автоматического управления;
  • низкий уровень шума;
  • высокая чистота получаемого сжатого воздуха;
  • низкий уровень энергозатрат на куб. метр произведенного воздуха.

Как же устроен винтовой компрессор?

Рис. 1,2 Устройство винтового компрессора

Воздух через всасывающий клапан (2) и воздушный фильтр (1) поступает в винтовую пару (3), которая является "сердцем" компрессора. Здесь он смешивается с маслом, циркулирующим по замкнутому контуру, и образовавшаяся воздушно-масляная смесь нагнетается с помощью винтового блока в пневмосистему. Разделение масла и воздуха происходит в сепараторе (8,9). Очищенный от масла воздух через охлаждающий радиатор (13) поступает на выход компрессора, а масло возвращается в винтовую пару. В зависимости от температуры оно проходит либо по малому кругу, либо по большому, через масляный радиатор (12). Регулировка осуществляется с помощью термостата (11). Винтовая пара приводится в движение электродвигателем (6), а автоматическое включение и выключение компрессора jсуществляется с помощью реле давления (16).

А теперь более подробно остановимся на составных частях компрессора, их назначении и устройстве.

Основой винтового компрессора является винтовая группа, ее конструкция хорошо видно на рис.3.

Рис. 3 Винтовой блок в разрезе

Рабочий элемент винтовой группы – это винтовая пара, состоящая из двух взаимносцепленных "червячных" роторов. Обычно, ведущий ротор выполнен как винт с четырехзаходной резьбой (витками), а ведомый с шестью (рис. 4).

Рис. 4 Схема работы винтового блока

Такое передаточное число считается оптимальным и сделано для того, чтобы уменьшить нагрузку на ведущий винт. Объем сжатия образуется между витками винтовой группы и корпусом (выделено жирной линией). Полный рабочий цикл сжатия осуществляется за один оборот ведущего винта. Из всего сказанного следует, что данная конструкция может работать только при условии очень точного прецизионного исполнения всех частей рабочего элемента (корпуса и двух взаимно подогнанных роторов).

Такое устройство принципиально отличается от поршневого компрессора, для которого характерно возвратно-поступательное движение поршня в цилиндре, приводящее к повышенному нагреву и возникновению сильных вибраций. Именно поэтому использование промышленных поршневых компрессоров требует закладки массивного фундамента для компенсации вибраций и применения водяного охлаждения, то есть организации системы оборотного водоснабжения с громоздкими градирнями.

Особо следует остановиться на роли масла в винтовом компрессоре, которое выполняет сразу несколько функций:

  • создание масляной пленки и обеспечение зазора между роторами винтовой группы;
  • транспортировка воздуха;
  • смазка подшипников рабочего элемента;
  • отвод тепла.

Для обеспечения температурного режима, масло, циркулирующее в компрессоре, прокачивается через охлаждающий радиатор (12). Дело в том, что при очень высоких температурах, выше 110°С, оно теряет свою плотность, а это грозит заклиниванием роторов винтовой пары. В то же время, при низких температурах масло обладает излишней вязкостью, а, кроме того, холодная воздушно-масляная смесь может привести к образованию конденсата, что ухудшает качество воздуха на выходе компрессора. Для того чтобы температура масла как можно быстрее достигла рабочего значения, используется термостат (11). То есть, существует малый круг циркуляции масла, когда оно, минуя радиатор, возвращается в систему. По мере нагрева, включается большой круг циркуляции через радиатор. Открытие термостата наступает при достижении температуры масла около 70°С. Воздушно-масляный радиатор (12,13) является двухсекционным, комбинированным. Кроме охлаждения масла он служит и для охлаждения воздуха. Благодаря этому разница между температурой окружающей среды и температурой воздуха на выходе компрессора не превышает 7°С. Это позволяет обеспечить дальнейшую эффективную работу осушителя и всей системы подготовки воздуха.

Радиатор охлаждается проходящим через него потоком воздуха, который нагнетается внутрь компрессора вентилятором (14), установленным на валу электродвигателя (6). Все панели компрессора во время работы должны быть обязательно закрыты, именно так задается максимально эффективное направление движения воздуха, обеспечивающего отбор тепла, вырабатываемого во время сжатия. Возможно вторичное использование нагретого воздуха, например, для обогрева помещений в зимнее время. Из сказанного выше следует, что винтовая пара может работать только при условии, если она постоянно находится в воздушно-масляной смеси.

Возникающая при этом проблема отделения воздуха от масла решается с помощью следующих элементов

  • маслосборный ресивер (8);
  • маслоотделительный фильтр (9);
  • устройство возврата масла.

Система отделения масла имеет три ступени очистки, что обеспечивает ее максимальную эффективность. В результате остаточное содержание масла в сжатом воздухе не превышает 3 мг/куб. м. На первом этапе отделение происходит за счет центробежных сил и силы тяжести. Воздушно-масляная смесь поступает из винтовой группы по соединительному шлангу в ресивер маслоотделителя (8). Ударяясь о стенки сосуда, более тяжелые частицы масла под воздействием силы тяжести и центробежных сил опускаются на дно. Для второй ступени механической очистки используется разделительная перегородка, расположенная в средине ресивера выше входного отверстия. Воздушно-масляная смесь, поднимаясь, проходит через отверстия в перегородке, на которой так же оседают частицы масла. Оконечным элементом внутренней очистки является фильтр маслоотделителя (9), представляющий собой обычный керамический фильтрующий элемент. Масло, которое задерживается фильтром, скапливается в специальном углублении и возвращается в винтовой блок через соединительную трубку. Для визуального контроля возврата масла в систему на прозрачной трубке сделано утолщение цилиндрической формы (19), Рис. 5. Важность этого элемента заключается в том, что он позволяет проверить эффективность работы маслоотделяющего фильтра, которая снижается при увеличении количества масла.

Читайте также:  Как паять схемы паяльником

Маслосборный ресивер (8) снабжен предохранительным клапаном (10), который защищает его от превышения давления.

Очистка масла от загрязнения осуществляется с помощью масляного фильтра (7). Он предотвращает попадание твердых частиц на рабочие поверхности винтов и подшипников.

Перейдем к рассмотрению других функциональных элементов компрессора (Рис. 5).

Рис. 5 Функциональная схема винтового компрессора

Воздушный фильтр (1), устанавливаемый на входе компрессора, предназначен для очистки поступающего воздуха. Он защищает винтовую пару от попадания посторонних частиц и, таким образом, обеспечивает надежность и долговечность работы компрессора. Преждевременное засорение воздушного фильтра может быть причиной перегрева электродвигателя и включения системы аварийной остановки. Всасывающий клапан (2) служит для предотвращения выброса наружу сжатого воздуха и масла в момент остановки компрессора. Фактически это обычный подпружиненный пневматический клапан, который постоянно открыт при всасывании воздуха. Управление работой всасывающего клапана осуществляется с помощью устройства пневмоавтоматики – электропневматического клапана холостого хода (15). Задача этого устройства заключается в том, чтобы до момента остановки электродвигателя снизить давление внутри компрессора до 2,5 бар. Это позволяет избежать выбросов масла, обусловленных инерционностью всасывающего клапана и неприятных гидравлических ударов, возникающих при внезапной остановке компрессора. Клапан открывает канал, соединяющий через дроссельное отверстие область маслоотделительного фильтра с областью всасывания винтовой пары. Эффективное сечение дроссельного отверстия регулируется на заводе изготовителе так, чтобы в течение заданного времени давление в области всасывающего клапана снизилось до 2,5 Бар. При таком остаточном давлении в системе всасывающий клапан успеет закрыться и приводной двигатель можно выключить.

Еще одним устройством, обеспечивающим работу компрессора в режиме холостого хода, является клапан минимального давления (20). Он закрыт, пока давление внутри компрессора остается в пределах не более 4-5 бар (отсюда и название). Одновременно он выполняет роль обратного клапана, отделяя компрессор от пневмолинии при его остановке или работе на холостом ходу.

Реле давления (16) обеспечивает автоматический режим работы компрессора. При достижении давления в сети заданного максимального значения (например, 10 бар) оно подает сигнал на клапан холостого хода, который срабатывает и переводит компрессор на холостой ход. Когда давление падает до минимального (например, 8 бар), клапан холостого хода по сигналу с реле закрывается, и компрессор вновь начинает нагнетать воздух в пневмолинию. Если же компрессор уже перешел в режим ожидания, то подается сигнал на пуск электродвигателя.

Привод в движение винтовой группы осуществляется электродвигателем (6), посредством ременной передачи (4). Передаточное число, а, следовательно, и скорость вращения винтового блока задается размерами шкивов (5). Чем выше максимальное давление компрессора, тем ниже возможная скорость вращения винтовой группы, тем меньше производительность компрессора.

Система аварийной защиты состоит из двух независимых устройств.

Датчик термозащиты установлен на электродвигателе. При достижении предельных значений потребляемого тока реле срабатывает и двигатель отключается от сети.

Другой датчик установлен в винтовой паре в области выходного патрубка (18). Сигнал с датчика температуры поступает на вход аналого-цифрового преобразователя и выдается на устройство индикации. Если температура на выходе винтовой пары превысит значение 105°С, защита срабатывает и двигатель выключается.

Винтовой компрессор является наиболее эффективным инструментом для организации пневмосистем, поскольку имеет компактные размеры, небольшую массу, низкий уровень шума и вибрации по сравнению с другими типами агрегатов, предназначенными для сжатия газов и воздуха.

Отличия и преимущества винтовых компрессоров перед поршневыми

Первое отличие винтовых компрессоров от поршневых заключается в их конструкции. Главное, чем отличаются винтовые компрессоры от поршневых — это механизм сжатия. В винтовых агрегатах применяются роторы с винтообразными зубьями, вращающимися навстречу друг другу. А в поршневых – поршень, который совершает возвратно-поступательные движения внутри цилиндра. Благодаря вышеописанным конструкционным различиям винтовой компрессор имеет небольшой вес и компактные габариты.

Кроме того, отличается способ нагнетания и аккумулирования воздуха. Винтовые аппараты создают постоянный поток воздуха. Поршневые же компрессоры подают воздух импульсами, которые соответствуют по частоте движениям поршня. Поэтому для создания постоянного потока к поршневым аппаратам подсоединяется ресивер.

Преимущества винтовых компрессоров перед поршневыми очевидны.

  1. Экономия электроэнергии. Она экономится за счет использования винтовых блоков последних поколений и автоматического управления подачей воздуха. Благодаря этому расход электричества уменьшается приблизительно на 30%.
  2. Низкая стоимость обслуживания. В среднем, обслуживание поршневых агрегатов требуется проводить через каждые 500 часов работы. Винтовым же аппаратам нужен осмотр после 4000-8000 часов работы.
  3. Длительный срок службы. Компрессоры с винтовым принципом действия способны работать без ремонта несколько лет подряд. Объясняется это отсутствием системы клапанов и наличием простой системы смазки и охлаждения. На винтовую пару агрегата производителем дается гарантия 2 года. Но, как показывает практика, аппараты могут работать без замены винтовой пары 7-8 лет. За это время в условиях предприятия приходится поменять около 5 компрессоров поршневого типа, имеющих аналогичную производительность.
  4. Низкая стоимость монтажа и наладки. Как уже говорилось, винтовые агрегаты имеют небольшие размеры и почти не производят шум и вибрацию. Поэтому экономятся средства на монтаж и установку оборудования, поскольку его не требуется устанавливать на фундамент или в отдельное помещение.
  5. Отличные технические характеристики. Винтовые агрегаты – это высококонкурентное оборудование, обладающее следующими техническими характеристиками: КПД до 95% (у поршневых аппаратов КПД не достигает 60%); производительность свыше 40 м 3 /мин; выходное давление до 9 кгс/см 2 .

Винтовые компрессоры выбирают множество предприятий России. Так, около 12% расходуемой страной электроэнергии идет на работу именно этих агрегатов. Несмотря на высокую стоимость, купить винтовой компрессор экономически целесообразно. Он обеспечит высокую скорость работы оборудования, минимизирует возможные простои из-за поломок, сэкономит на обслуживании.

Устройство и принцип работы винтовых компрессоров

Основным узлом винтового компрессора является винтовой блок (см. рис. ниже). Он состоит из корпуса (1), в котором расположена винтовая пара (2 и 3).

Роторы в средней части имеют утолщения, на которых нарезан винтовой профиль. Данные винты установлены таким образом, чтобы между ними был зазор в диапазоне от 0,1 до 0,4 мм. Роторная пара устанавливается либо на втулки, либо на подшипники. Синхронизируется вращение винтов с помощью шестерен (4), закрепленных на валах роторов. Чтобы обеспечить герметичность корпуса, он собирается с сальниками и уплотнителями.

Важно! Ведущий винт агрегата имеет выпуклую и широкую форму зубьев, а ведомый – тонкую и вогнутую.

В корпусе компрессора также предусмотрены полости для охлаждения (5), в которые, при необходимости, подается жидкость. Привод компрессора может быть как прямым, так и ременным.

Принцип действия роторного блока заключается в следующем.

  1. При вращении винтов воздух начинает поступать через впускное отверстие в полость всасывания, где находится роторная пара. На данном этапе воздух заполняет винтовые впадины по всей длине (рис. 1).
  2. При вращении роторов навстречу друг другу происходит отсечение объема всасывания от впускного отверстия. На данном этапе происходит впрыскивание масла для уплотнения зазоров между винтами и их смазки. Также поступающее масло отбирает тепло, выделяющееся при сжатии воздуха, выполняя функцию охлаждения. При дальнейшем проворачивании винтов объем рабочей камеры уменьшается, а давление в ней возрастает.
  3. Далее, в момент, когда впадины винта соединяются с выпускным отверстием компрессора, сжатие в камере прекращается, и начинается выход сжатой воздушно-масляной смеси через выпускное окно агрегата.

Устройство винтового компрессора заметно отличается от устройства поршневого агрегата. Ниже приведена схема винтового компрессора, включающая в себя следующие элементы.

  1. Фильтр. Предназначен для очистки атмосферного воздуха, засасываемого в агрегат.
  2. Клапан всасывания. Препятствует выбросу масла и воздуха при остановке компрессора.
  3. Винтовой блок. Является основным рабочим узлом агрегата, состоящим из винтовой пары, помещенной в корпус. Рядом с патрубком (18) устанавливается датчик термозащиты, выключающий двигатель, если на выходе из винтового блока будет температура выше 105°С.
  4. Ременной привод. Предназначен для передачи вращательного движения от двигателя к винтам. Привод состоит из 2 шкивов. Один шкив установлен на валу двигателя, а другой – на ведущем валу винтового блока.
  5. Шкивы. От их размеров зависит скорость вращения роторной пары. Шкивы соединяются между собой посредством приводного ремня.
  6. Двигатель. Задает вращательное движение ременному приводу, который, в свою очередь, приводит в действие винтовой блок.
  7. Масляный фильтр. Предназначен для очистки масла, возвращающегося в роторный блок.
  8. Первичный маслоотделитель. В данном узле происходит отделение масла от воздуха с помощью центробежной силы.
  9. Маслоотделительный фильтр. Предназначен для вторичной очистки воздуха от остатков масла, то есть более качественной. На выходе из фильтра в воздухе можно обнаружить остаточные пары масла в количестве 1,3 мг/м 3 . Данный показатель для поршневых аппаратов является недостижимым.
  10. Предохранительный клапан. Обеспечивает безопасность при работе агрегата. Если в маслоотделителе (8) будет превышено давление, то в работу включится клапан, сбросив его до допустимого уровня.
  11. Термостат. Благодаря ему поддерживается оптимальная температура масляного состава. Последний может свободно проходить мимо радиатора охлаждения, пока не достигнет температуры 72°С.
  12. Маслоохладитель. В данный резервуар поступает разогретое масло, отделенное от воздуха, для охлаждения до нужной температуры.
  13. Воздухоохладитель. Позволяет охладить воздух перед подачей на точки потребления до температуры на 15-20°С выше, чем температура окружающей среды.
  14. Вентилятор. Предназначен для охлаждения всех узлов агрегата.
  15. Клапан холостого хода. Является электропневматическим и предназначен для управления клапаном всасывания (2).
  16. Реле давления. Благодаря ему обеспечивается работа аппарата в автоматическом режиме. В компрессорах последнего поколения вместо реле давления установлена электронная система управления.
  17. Манометр. Показывает уровень давления внутри агрегата.
  18. Выходной патрубок. Через него сжатый воздух поступает на точки потребления.
  19. Приспособление для визуального контроля. Выполнено в виде прозрачного утолщения на трубке. С его помощью можно контролировать процесс возврата масла.
  20. Клапан минимального давления. Находится в закрытом состоянии, пока давление не поднимется до 4 бар. Поскольку данный элемент отделяет пневмолинию от компрессора, он выполняет функцию обратного клапана при остановке агрегата или переходе его на холостой режим.
Читайте также:  Схемы подключения тепловых счетчиков

Все перечисленные детали и узлы винтового компрессора помещаются в металлический корпус, покрытый звукопоглощающим составом. В зависимости от фирмы производителя и модели аппарата, его устройство может незначительно отличаться от вышеописанного.

Если подробно рассмотреть принцип работы винтового компрессора, то он выглядит следующим образом (см. рис. ниже).

  1. При включении агрегата через фильтр (1) начинает засасываться воздух.
  2. Далее, воздух поступает в регулятор всасывания (2), после чего перемещается в роторный блок (3).
  3. В роторном блоке происходит смешивание воздуха с маслом и последующее его сжатие. Масло поступает в блок точно дозированными порциями.
  4. Воздушно-масляная смесь попадает в сепаратор (8) и проходит через картридж (9), где разделяется на масло и воздух.
  5. Далее, чистый воздух проходит через радиатор охлаждения (13) и выходит из агрегата.
  6. Масло, которое было отделено в сепараторе (8), снова поступает в роторный блок. От температуры возвращающегося масла зависит, по какому кругу оно будет двигаться — по большому или малому. Если масло слишком горячее, то срабатывает клапан термостата (11) и перенаправляет его по большому кругу, через масляный радиатор (12).
  7. Перед тем, как поступить из радиатора в винтовой блок, масло проходит очистку в фильтре (7).
  8. Винтовая пара приводится в движение посредством двигателя (6) и клиноременной передачи (4 и 5).

Режимы работы

Винтовые компрессорные агрегаты, даже самые простые, имеют 5 режимов работы.

  1. Пуск. Это режим запуска агрегата, при котором исключается перегрузка электросети. Напряжение подается на двигатель постепенно, благодаря чему он приступает к работе только через 10-15 сек. после нажатия на кнопку включения.
  2. Холостой ход. В данном режиме происходит подготовка аппарата к работе с полной нагрузкой. Роторы приводятся в движение двигателем и начинают нагнетать воздух, но на малой мощности.
  3. Рабочий режим. В этом режиме наблюдается полноценная работа агрегата, на выходе которого получается сжатый воздух.
  4. Режим ожидания. Активируется в момент достижения в системе определённого давления. В режиме ожидания все процессы в компрессоре останавливаются до тех пор, пока давление в системе не снизится до уровня, при котором происходит включение аппарата.

Некоторые модели винтовых компрессоров имеют режим Stop-Alarm. Данный режим включается при возникновении каких-либо неполадок в оборудовании, либо при повышении давления и температуры в агрегате до критических уровней. Режим Stop-Alarm, как правило, срабатывает автоматически. Но для его включения вручную предусмотрена кнопка, размещенная на панели управления аппаратом.

Разновидности винтовых компрессоров

Существующие виды винтовых компрессоров определяют их сферы использования. К примеру, промышленные маслозаполненные агрегаты являются универсальными и широко применяются в различных областях. Но применение безмасляных аппаратов востребовано лишь в тех областях, где требуется высокая степень очистки сжатого воздуха, например, в пищевой, химической и фармацевтической промышленности.

Безмасляные аппараты

Безмасляный компрессор при сжатии воздуха в качестве смазки и охлаждения роторного блока масло не использует, поэтому сжатый воздух, произведенный аппаратом, не содержит частиц смазочных материалов. Безмасляные агрегаты делятся на 2 подвида: винтовые сухого сжатия и водозаполненные.

Винтовые компрессоры сухого сжатия оснащаются синхронными двигателями, приводящими в движение винты, не контактирующие друг с другом. “Сухие” аппараты имеют меньшую производительность (3,5 бар на 1 ступень), чем маслозаполненные устройства. При подключении второй ступени можно увеличить данный показатель до 10 бар. Но эта мера лишь увеличит стоимость оборудования, которая и так достаточно высока по причине использования спаренных двигателей.

Водозаполненные аппараты являются самыми технологичными и сочетают в себе все достоинства как безмасляных, так и маслозаполненных устройств. Водозаполненные аппараты способны на силу сжатия до 13 бар (на 1 ступень). Также данные модели являются экологичными, поскольку вместо масла для охлаждения в них используется обычная вода. Поскольку вода имеет высокую теплоемкость и теплопроводность, то, независимо от уровня сжатия воздуха, она нагревается максимум на 12°С за счет дозированного впрыска. Из этого следует, что при уменьшении тепловой нагрузки на детали агрегата увеличивается их срок службы, а также повышается безопасность и надежность оборудования в целом.

Важно! Выходящий из водозаполненного агрегата воздух не требуется охлаждать, поскольку вода, которая циркулирует в системе, всегда будет иметь температуру окружающего воздуха.

Водозаполненные компрессоры практически не имеют отходов при работе. Также данные аппараты дешевле в производстве, поскольку в их конструкции отсутствуют масляные фильтры и емкости для отработанного масла.

Маслозаполненные аппараты

Масляный агрегат, как уже говорилось выше, имеет 2 ротора, один из которых, является ведущим. Для предотвращения физического контакта между роторами, внутрь блока впрыскивается масло. Оно должно подаваться со скоростью 1 л/мин на 1 кВт мощности аппарата. Масляные компрессоры имеют шумность в пределах 60-80 Дб.

По мощности двигателя компрессоры могут быть от 3 до 355 кВт, а по производительности – от 0,4 до 54 м 3 /мин. Высокопроизводительное оборудование, как правило, является стационарным и устанавливается в цехах. Но все же существуют и передвижные винтовые компрессоры, как бензиновые, так и дизельные.

Распространенные неисправности винтовых компрессоров и их устранение

Длительная эксплуатация любого оборудования приводит к тому, что оно требует либо сервисного обслуживания, либо серьезного ремонта. Не являются исключением и компрессоры, основным узлом которых является роторный блок.

Ремонт винтовых компрессоров своими руками вполне возможен в следующих случаях:

  • аппарат с трудом запускается;
  • компрессор не перезапускается;
  • в выходном патрубке агрегата отсутствует сжатый воздух;
  • низкая производительность;
  • чрезмерный расход масла;
  • непроизвольное срабатывание предохранительного клапана;
  • отключение аппарата термостатом;
  • отключение агрегата прерывателем сети;
  • поломка роторного блока;
  • повышенное давление.

Аппарат плохо запускается

Причиной того, что агрегат запускается с трудом, может быть низкая температура окружающего воздуха. Запуск компрессора произойдет только после прогрева помещения, в котором он установлен.

Устройство не перезапускается

Данная поломка вызывается плохим закрытием всасывающего клапана. Проблема решается прочисткой клапана. Если данная процедура не решила проблему, то клапан всасывания следует заменить.

Отсутствие сжатого воздуха

Если в выходном отверстии аппарата отсутствует сжатый воздух, то это признак закрытия регулятора. Чтобы устранить неисправность, потребуется проверить работоспособность реле давления. Именно этот узел подает питание на клапан, являющийся электромагнитным, который, в свою очередь, связан с регулятором.

Низкая производительность

Понижение производительности оборудования также связано с закрытием регулятора. В данном случае поломка вызывается засорением последнего. Чтобы производительность аппарата пришла в норму, требуется снять всасывающий фильтр, открыть или демонтировать регулятор, и хорошо прочистить его.

Чрезмерный расход масла или его утечка

Большой расход масла может вызывать сломанный фильтр, установленный в маслоотделителе, или негерметичность уплотнений этого же фильтра. В обоих случаях проблема решается заменой данных деталей.

Важно! Вызвать утечку масла может незакрытый регулятор или чрезмерно повышенное давление в системе. В первом случае следует проверить исправность электромагнитного клапана и регулятора. Во втором — подвергнуть проверке манометр.

Открытие предохранительного клапана

Данная поломка может возникнуть, если фильтр маслоотделителя засорился. Требуется проверить, существует ли перепад давления между масляным сепаратором, то есть его резервуаром и трубопроводом, в котором находится сжатый воздух. Проблема решается заменой фильтра.

Срабатывание термостата

Отключение агрегата термостатом может вызываться несколькими причинами.

  1. Высокая температура окружающей среды. Следует обеспечить помещение с оборудованием хорошей вентиляцией, после чего нажать кнопку “reset” и перезагрузить аппарат.
  2. Засорение охладителя масла. Требуется прочистить охладитель с применением растворяющей жидкости.
  3. Низкий уровень масла. Следует долить необходимое количество последнего.
  4. Неисправность термостата. Деталь следует заменить на исправную.

Отключение двигателя прерывателем сети

Срабатывание прерывателя цепи может вызвать низкое напряжение в сети. Следует проверить напряжение и, при его нормальных показателях, перезапустить аппарат, нажав на кнопку “Reset”.

Также прерыватель цепи может сработать при перегреве двигателя. В первую очередь, нужно проверить теплоотвод от электромотора. Если режим отвода тепла не нарушен, то произведите перезапуск оборудования. В случае, когда перезапуск не происходит, следует подождать несколько минут и снова повторить попытку.

Поломка роторного блока

Если обратить внимание на описание роторного блока, которое приводилось выше, то станет понятно, что его ремонт возможно произвести только в случае выхода из строя подшипников. В случае заклинивания роторов ремонт винтовых блоков следует доверить специалистам сервисного центра.

Повышенное давление

Если давление поднимается выше максимально допустимых показателей, то в первую очередь проверяется регулятор. Возможно, нет команды на его закрытие. Убедитесь, что электромагнитный клапан находится в закрытом состоянии. При необходимости, данные детали следует заменить.

Материал подготовлен при участии специалистов https://www.v-p-k.ru/

Ссылка на основную публикацию
Adblock detector